24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.

          Related collections

          Most cited references260

          • Record: found
          • Abstract: found
          • Article: not found

          ER stress-induced cell death mechanisms.

          The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. © 2013.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications.

            Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.

              Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2018
                12 February 2018
                : 8
                : 7
                : 1824-1849
                Affiliations
                [1 ]Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
                [2 ]Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
                [3 ]Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
                [4 ]University of Chinese Academy of Sciences, Beijing, China
                [5 ]State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
                a E-mail address: liuyan@impcas.ac.cn (Y. Liu)
                Author notes
                ✉ Corresponding authors: Weiqiang Chen and Qiang Li, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China. Tel: +86-931-4969316; Fax: +86-931-8272100; E-mail addresses: chenwq7315@ 123456impcas.ac.cn (W. Chen), liqiang@ 123456impcas.ac.cn (Q. Li)

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov08p1824
                10.7150/thno.22172
                5858503
                29556359
                eacef187-bef5-4e1e-b089-3b540a176a60
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 31 July 2017
                : 5 January 2018
                Categories
                Review

                Molecular medicine
                tumor,radiation therapy,metal-based nanoparticles,nanoenhancers,radiosensitization,synergistic chemo-radiotherapy

                Comments

                Comment on this article