2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Treatment with an Anti-CK2 Synthetic Peptide Improves Clinical Response in COVID-19 Patients with Pneumonia. A Randomized and Controlled Clinical Trial

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The instrumental role of CK2 in the SARS-CoV-2 infection has pointed out this protein kinase as promising therapeutic target in COVID-19. Anti-SARS-CoV-2 activity has been reported by CK2 inhibitors in vitro; however, no anti-CK2 clinical approach has been investigated in COVID-19. This trial aimed to explore the safety and putative clinical benefit of CIGB-325, an anti-CK2 peptide previously assessed in cancer patients. A monocentric, controlled, and therapeutic exploratory trial of intravenous CIGB-325 in adults hospitalized with COVID-19 was performed. Twenty patients were randomly assigned to receive CIGB-325 (2.5 mg/kg/day during 5-consecutive days) plus standard-of-care (10 patients) or standard-of-care alone (10 patients). Adverse events were classified by the WHO Adverse Reaction Terminology. Parametric and nonparametric statistical analyses were performed according to the type of variable. Considering the small sample size, differences between groups were estimated by Bayesian analysis. CIGB-325 induced transient mild and/or moderate adverse events such as pruritus, flushing, and rash in some patients. Both therapeutic regimens were similar with respect to SARS-CoV-2 clearance in nasopharynx swabs over time. However, CIGB-325 significantly reduced the median number of pulmonary lesions (9.5 to 5.5, p = 0.042) at day 7 and the proportion of patients with such an effect was also higher according to Bayesian analysis (pDif > 0; 0.951). Also, CIGB-325 significantly reduced the CPK ( p = 0.007) and LDH ( p = 0.028) plasma levels at day 7. Our preliminary findings suggest that this anti-CK2 clinical approach could be combined with standard-of-care in COVID-19 in larger studies.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found

          Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Remdesivir for the Treatment of Covid-19 — Final Report

            Abstract Background Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. Methods We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. Results A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%). Conclusions Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19

              Abstract Background No therapeutics have yet been proven effective for the treatment of severe illness caused by SARS-CoV-2. Methods We conducted a randomized, controlled, open-label trial involving hospitalized adult patients with confirmed SARS-CoV-2 infection, which causes the respiratory illness Covid-19, and an oxygen saturation (Sao 2) of 94% or less while they were breathing ambient air or a ratio of the partial pressure of oxygen (Pao 2) to the fraction of inspired oxygen (Fio 2) of less than 300 mm Hg. Patients were randomly assigned in a 1:1 ratio to receive either lopinavir–ritonavir (400 mg and 100 mg, respectively) twice a day for 14 days, in addition to standard care, or standard care alone. The primary end point was the time to clinical improvement, defined as the time from randomization to either an improvement of two points on a seven-category ordinal scale or discharge from the hospital, whichever came first. Results A total of 199 patients with laboratory-confirmed SARS-CoV-2 infection underwent randomization; 99 were assigned to the lopinavir–ritonavir group, and 100 to the standard-care group. Treatment with lopinavir–ritonavir was not associated with a difference from standard care in the time to clinical improvement (hazard ratio for clinical improvement, 1.24; 95% confidence interval [CI], 0.90 to 1.72). Mortality at 28 days was similar in the lopinavir–ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage points; 95% CI, −17.3 to 5.7). The percentages of patients with detectable viral RNA at various time points were similar. In a modified intention-to-treat analysis, lopinavir–ritonavir led to a median time to clinical improvement that was shorter by 1 day than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Gastrointestinal adverse events were more common in the lopinavir–ritonavir group, but serious adverse events were more common in the standard-care group. Lopinavir–ritonavir treatment was stopped early in 13 patients (13.8%) because of adverse events. Conclusions In hospitalized adult patients with severe Covid-19, no benefit was observed with lopinavir–ritonavir treatment beyond standard care. Future trials in patients with severe illness may help to confirm or exclude the possibility of a treatment benefit. (Funded by Major Projects of National Science and Technology on New Drug Creation and Development and others; Chinese Clinical Trial Register number, ChiCTR2000029308.)
                Bookmark

                Author and article information

                Journal
                ACS Pharmacol Transl Sci
                ACS Pharmacol Transl Sci
                pt
                aptsfn
                ACS Pharmacology & Translational Science
                American Chemical Society
                2575-9108
                11 December 2020
                : acsptsci.0c00175
                Affiliations
                []Central Hospital “Luis Diaz Soto” , Havana 19130, Cuba
                []Center for Genetic Engineering and Biotechnology , Havana 10600, Cuba
                [§ ]Center for Molecular Immunology , Havana 11600, Cuba
                []International Center of Health “La Pradera” , Havana 11600, Cuba
                []National Institute of Oncology and Radiobiology , Havana 10400, Cuba
                [# ]Faculty of Biology, University of Havana , Havana 10400, Cuba
                []China−Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd , Hunan 425000, China
                []ATENEA-Co-300 Group , Havana 11300, Cuba
                Author notes
                Article
                10.1021/acsptsci.0c00175
                7755077
                33615173
                eada78d5-4ae3-4f8d-93ab-06253e5c8c80
                © 2020 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 21 October 2020
                Categories
                Article
                Custom metadata
                pt0c00175
                pt0c00175

                covid-19,sars-cov-2,protein kinase ck2,cigb-325
                covid-19, sars-cov-2, protein kinase ck2, cigb-325

                Comments

                Comment on this article