14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

          We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.

            Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solution-processed metal nanowire mesh transparent electrodes.

              Transparent conductive electrodes are important components of thin-film solar cells, light-emitting diodes, and many display technologies. Doped metal oxides are commonly used, but their optical transparency is limited for films with a low sheet resistance. Furthermore, they are prone to cracking when deposited on flexible substrates, are costly, and require a high-temperature step for the best performance. We demonstrate solution-processed transparent electrodes consisting of random meshes of metal nanowires that exhibit an optical transparency equivalent to or better than that of metal-oxide thin films for the same sheet resistance. Organic solar cells deposited on these electrodes show a performance equivalent to that of devices based on a conventional metal-oxide transparent electrode.
                Bookmark

                Author and article information

                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley-Blackwell
                1616301X
                September 14 2013
                September 14 2013
                : 23
                : 34
                : 4171-4176
                Article
                10.1002/adfm.201203802
                © 2013
                Product

                Comments

                Comment on this article