9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Beyond Biology: The Crucial Role of Sex and Gender in Oncology

      Submit here before May 31, 2024

      About Oncology Research and Treatment: 2.4 Impact Factor I 3.3 CiteScore I 0.495 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Detection of Pleiotropic Drug Resistance by the Rapid Immunofluorescence Assay of Drug Effects on the Cell Skeleton

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We describe the development of an immunofluorescent method for the detection of resistance to agents which affect the integrity of the cellular microtubular network. Three pleiotropic resistant MCF-7 human breast carcinoma cell lines mixed with vaginal adenocarcinoma cells were selected in serially increasing drug concentrations, and demonstrated a 30-fold increase in resistance to colchicine. Transport studies indicated that there was no difference in drug accumulation between the sensitive and resistant lines. The colchicine-binding capacity of cell extracts from sensitive and resistant cells was similar (K<sub>d</sub> for sensitive cells was 1.9 x 10<sup>-6</sup> M and for resistant cells 1.58 x 10<sup>-6</sup> M). There were, however, significant differences in cytoskeletal morphology between sensitive and resistant cells. Drug-sensitive cells were mostly large (about 70 μm<sup>2</sup>) and flattened. Their cytoplasm was filled with a microtubular network in which, in most of the cases, single fibers could be differentiated. Cells usually had a microtubule-organizing center and paracortical bundles of microtubules. In contrast, drug-resistant cells were mostly rounded and grew in clumps. In only 40% of these cells could single microtubular fibers be differentiated. Resistant cells lacked a microtubule-organizing center and had no clear paracortical bundles of microtubules. The tubulin-binding agents tested caused a sequence of morphological changes in sensitive cells. These changes included precipitation of tubulin and disappearance of cytoskeletal structure. Changes occurred initially within 3 h of incubation, but were expressed in all cells after 6 h. If, after 3 h of drug exposure, cells were subcultured in drug-free media, the cytoskeletal structure reformed within 10 h. Maximal recovery of cytoskeletal structure occurred 22 h after drug removal and was sustained up to 36 h. In contrast to changes observed in sensitive cells, drug exposure did not induce changes in the morphology of cytoskeleton in resistant cells. Cells from all three resistant lines reverted to sensitivity after 7 months of culture in drug-free media. This was first detected by immunofluorescence and then confirmed by cloning assay. Since the cytoskeletal disintegration of sensitive cells is readily detectable within a few hours of in vitro drug treatment, immunofluorescent imaging may have its clinical application in predicting the sensitivity/resistance to microtubule-binding agents.

          Related collections

          Author and article information

          Journal
          OCL
          Oncology
          10.1159/issn.0030-2414
          Oncology
          S. Karger AG
          0030-2414
          1423-0232
          1991
          1991
          26 June 2009
          : 48
          : 3
          : 202-209
          Affiliations
          Clinical Oncology Services, Institute of Pathologic Physiology, and Institute of Biochemistry, Medical Faculty, University of Banja Luka, Bosna, Yugoslavia
          Article
          226928 Oncology 1991;48:202–209
          10.1159/000226928
          2023698
          eaeabf09-3dbe-4a75-86f4-54ab6717f0b8
          © 1991 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          Page count
          Pages: 8
          Categories
          Original Paper

          Oncology & Radiotherapy,Pathology,Surgery,Obstetrics & Gynecology,Pharmacology & Pharmaceutical medicine,Hematology
          Immunofluorescence,Drug resistance,Tubulin-binding agents,Monoclonal antitubulin antibodies,Cytoskeleton,MCF-7 breast cancer cells

          Comments

          Comment on this article