4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating Tumour Cell Biomarkers in Head and Neck Cancer: Current Progress and Future Prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Head and neck cancer (HNC) continues to carry a significant burden of disease both for patients and health services. Facilitating biomarker-led treatment decisions is critical to improve outcomes in this group and deliver therapy tailored to the individual tumour biological profile. One solution to develop such biomarkers is a liquid biopsy analysing circulating tumour cells (CTCs)—providing a non-invasive and dynamic assessment of tumour specific alterations in ‘real-time’. A major obstacle to implementing such a test is the standardisation of CTC isolation methods and subsequent down-stream analysis. Several options are available, with a recent shift in vogue from positive-selection marker-dependent isolation systems to marker-independent negative-selection techniques. HNC single-CTC characterisation, including single-cell sequencing, to identify actionable mutations and gene-expression signatures has the potential to both guide the understanding of patient tumour heterogeneity and support the adoption of personalised medicine strategies. Microfluidic approaches for isolating CTCs and cell clusters are emerging as novel technologies which can be incorporated with computational platforms to complement current diagnostic and prognostic strategies. We review the current literature to assess progress regarding CTC biomarkers in HNC and potential avenues for future translational research and clinical implementation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of mutations in EGFR in circulating lung-cancer cells.

          The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding

            Summary The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)

              Head and neck cancers, including those of the lip and oral cavity, nasal cavity, paranasal sinuses, oropharynx, larynx and nasopharynx represent nearly 700,000 new cases and 380,000 deaths worldwide per annum, and account for over 10,000 annual deaths in the United States alone. Improvement in outcomes are needed for patients with recurrent and or metastatic squamous cell carcinoma of the head and neck (HNSCC). In 2016, the US Food and Drug Administration (FDA) granted the first immunotherapeutic approvals – the anti-PD-1 immune checkpoint inhibitors nivolumab and pembrolizumab – for the treatment of patients with recurrent squamous cell carcinoma of the head and neck (HNSCC) that is refractory to platinum-based regimens. The European Commission followed in 2017 with approval of nivolumab for treatment of the same patient population, and shortly thereafter with approval of pembrolizumab monotherapy for the treatment of recurrent or metastatic HNSCC in adults whose tumors express PD-L1 with a ≥ 50% tumor proportion score and have progressed on or after platinum-containing chemotherapy. Then in 2019, the FDA granted approval for PD-1 inhibition as first-line treatment for patients with metastatic or unresectable, recurrent HNSCC, approving pembrolizumab in combination with platinum and fluorouracil for all patients with HNSCC and pembrolizumab as a single agent for patients with HNSCC whose tumors express a PD-L1 combined positive score ≥ 1. These approvals marked the first new therapies for these patients since 2006, as well as the first immunotherapeutic approvals in this disease. In light of the introduction of these novel therapies for the treatment of patients with head and neck cancer, The Society for Immunotherapy of Cancer (SITC) formed an expert committee tasked with generating consensus recommendations for emerging immunotherapies, including appropriate patient selection, therapy sequence, response monitoring, adverse event management, and biomarker testing. These consensus guidelines serve as a foundation to assist clinicians’ understanding of the role of immunotherapies in this disease setting, and to standardize utilization across the field for patient benefit. Due to country-specific variances in approvals, availability and regulations regarding the discussed agents, this panel focused solely on FDA-approved drugs for the treatment of patients in the U.S. Electronic supplementary material The online version of this article (10.1186/s40425-019-0662-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                05 August 2019
                August 2019
                : 11
                : 8
                : 1115
                Affiliations
                [1 ]Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
                [2 ]Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
                Author notes
                [* ]Correspondence: k.payne.1@ 123456bham.ac.uk
                Author information
                https://orcid.org/0000-0002-2305-7427
                https://orcid.org/0000-0002-5544-6224
                Article
                cancers-11-01115
                10.3390/cancers11081115
                6721520
                31387228
                eaf08745-80dd-43d9-b338-95164409e9e1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 July 2019
                : 01 August 2019
                Categories
                Review

                head and neck cancer,circulating tumour cell,biomarker

                Comments

                Comment on this article