12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circulating Adiponectin and Resistin Levels in Relation to Metabolic Factors, Inflammatory Markers, and Vascular Reactivity in Diabetic Patients and Subjects at Risk for Diabetes

      , , , ,
      Diabetes Care
      American Diabetes Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adiponectin and resistin, two recently discovered adipocyte-secreted hormones, may link obesity with insulin resistance and/or metabolic and cardiovascular risk factors. We performed a cross-sectional study to investigate the association of adiponectin and resistin with inflammatory markers, hyperlipidemia, and vascular reactivity and an interventional study to investigate whether atorvastatin mediates its beneficial effects by altering adiponectin or resistin levels. Associations among vascular reactivity, inflammatory markers, resistin, and adiponectin were assessed cross-sectionally using fasting blood samples obtained from 77 subjects who had diabetes or were at high risk to develop diabetes. The effect of atorvastatin on adiponectin and resistin levels was investigated in a 12-week-long randomized, double-blind, placebo-controlled study. In the cross-sectional study, we confirm prior positive correlations of adiponectin with HDL and negative correlations with BMI, triglycerides, C-reactive protein (CRP), and plasma activator inhibitor (PAI)-1 and report a negative correlation with tissue plasminogen activator. The positive association with HDL and the negative association with PAI-1 remained significant after adjusting for sex and BMI. We also confirm prior findings of a negative correlation of resistin with HDL and report for the first time a positive correlation with CRP. All of these associations remained significant after adjusting for sex and BMI. No associations of adiponectin or resistin with any aspects of vascular reactivity were detected. In the interventional study, atorvastatin decreased lipid and CRP levels, but adiponectin and resistin were not specifically altered. We conclude that adiponectin is significantly associated with inflammatory markers, in part, through an underlying association with obesity, whereas resistin's associations with inflammatory markers appear to be independent of BMI. Lipid profile and inflammatory marker changes produced by atorvastatin cannot be attributed to changes of either adiponectin or resistin. Copyright 2004 American Diabetes Association

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.

            We investigated the functions of adiponectin, an adipocyte-specific secretory protein and a new member of the family of soluble defense collagens, in hematopoiesis and immune responses. Adiponectin suppressed colony formation from colony-forming units (CFU)-granulocyte-macrophage, CFU-macrophage, and CFU-granulocyte, whereas it had no effect on that of burst-forming units-erythroid or mixed erythroid-myeloid CFU. In addition, adiponectin inhibited proliferation of 4 of 9 myeloid cell lines but did not suppress proliferation of erythroid or lymphoid cell lines except for one cell line. These results suggest that adiponectin predominantly inhibits proliferation of myelomonocytic lineage cells. At least one mechanism of the growth inhibition is induction of apoptosis because treatment of acute myelomonocytic leukemia lines with adiponectin induced the appearance of subdiploid peaks and oligonucleosomal DNA fragmentation. Aside from inhibiting growth of myelomonocytic progenitors, adiponectin suppressed mature macrophage functions. Treatment of cultured macrophages with adiponectin significantly inhibited their phagocytic activity and their lipopolysaccharide-induced production of tumor necrosis factor alpha. Suppression of phagocytosis by adiponectin is mediated by one of the complement C1q receptors, C1qRp, because this function was completely abrogated by the addition of an anti-C1qRp monoclonal antibody. These observations suggest that adiponectin is an important negative regulator in hematopoiesis and immune systems and raise the possibility that it may be involved in ending inflammatory responses through its inhibitory functions. (Blood. 2000;96:1723-1732)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of adiponectin causes insulin resistance and neointimal formation.

              The adipocyte-derived hormone adiponectin has been proposed to play important roles in the regulation of energy homeostasis and insulin sensitivity, and it has been reported to exhibit putative antiatherogenic properties in vitro. In this study we generated adiponectin-deficient mice to directly investigate whether adiponectin has a physiological protective role against diabetes and atherosclerosis in vivo. Heterozygous adiponectin-deficient (adipo(+/-)) mice showed mild insulin resistance, while homozygous adiponectin-deficient (adipo(-/-)) mice showed moderate insulin resistance with glucose intolerance despite body weight gain similar to that of wild-type mice. Moreover, adipo(-/-) mice showed 2-fold more neointimal formation in response to external vascular cuff injury than wild-type mice (p = 0.01). This study provides the first direct evidence that adiponectin plays a protective role against insulin resistance and atherosclerosis in vivo.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                September 24 2004
                October 01 2004
                September 24 2004
                October 01 2004
                : 27
                : 10
                : 2450-2457
                Article
                10.2337/diacare.27.10.2450
                15451915
                eaf1dd67-41c3-4e10-b857-47fdb4e0b45e
                © 2004
                History

                Comments

                Comment on this article