27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RasGrf1: genomic imprinting, VSELs, and aging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increase in life span in RasGrf1-deficient mice revealed that RasGrf1 deficiency promotes longevity. Interestingly, RasGrf1 is one of parentally imprinted genes transcribed from paternally-derived chromosome. Erasure of its imprinting results in RasGrf1 downregulation and has been demonstrated in a population of pluripotent adult tissues-derived very small embryonic like stem cells (VSELs), stem cells involved in tissue organ rejuvenation. Furthermore, based on recent observation that RasGrf1 signaling molecule is located downstream from insulin (Ins) and insulin like growth factor-1 (Igf-1) receptors, the extended life-span of RasGrf1 −/− mice may support beneficial effect of reduced Ins/Igf-1 signaling on longevity. Similarly, downregulation of RasGrf1 in VSELs renders them resistant to chronic Ins/Igf-1 signaling and protects from premature depletion from adult tissues. Thus, the studies in RasGrf1 −/− mice indicate that some of the imprinted genes may play a role in ontogenetic longevity and suggest that there are sex differences in life span that originate at the genome level. All this in toto supports a concept that the sperm genome may have a detrimental effect on longevity in mammals. We will discuss a role of RasGrf1 on life span in context of genomic imprinting and VSELs.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.

          Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic Signatures of Exceptional Longevity in Humans

            Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Life extension in the dwarf mouse.

              Ames dwarf mice and Snell dwarf mice lack growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH), live much longer than their normal siblings, and exhibit many symptoms of delayed aging. "Laron dwarf mice," produced by targeted disruption of the GH receptor/GH-binding protein gene (GHR-KO mice), are GH resistant and also live much longer than normal animals from the same line. Isolated GH deficiency in "little" mice is similarly associated with increased life span, provided that obesity is prevented by reducing fat content in the diet. Long-lived dwarf mice share many phenotypic characteristics with genetically normal (wild-type) animals subjected to prolonged caloric restriction (CR) but are not CR mimetics. We propose that mechanisms linking GH deficiency and GH resistance with delayed aging include reduced hepatic synthesis of insulin-like growth factor 1 (IGF-1), reduced secretion of insulin, increased hepatic sensitivity to insulin actions, reduced plasma glucose, reduced generation of reactive oxygen species, improved antioxidant defenses, increased resistance to oxidative stress, and reduced oxidative damage. The possible role of hypothyroidism, reduced body temperature, reduced adult body size, delayed puberty, and reduced fecundity in producing the long-lived phenotype of dwarf mice remains to be evaluated. An important role of IGF-1 and insulin in the control of mammalian longevity is consistent with the well-documented actions of homologous signaling pathways in invertebrates.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                ImpactJ
                Aging (Albany NY)
                Impact Journals LLC
                1945-4589
                July 2011
                11 July 2011
                : 3
                : 7
                : 692-697
                Affiliations
                1 Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
                2 Department of Physiology, Pomeranian Medical University, Szczecin, Poland and
                3 Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
                Author notes
                Correspondence to Mariusz Z. Ratajczak at, mzrata01@ 123456louisville.edu
                Article
                10.18632/aging.100354
                3181169
                21765200
                eafcbf41-d23a-485a-b450-039ae6ce92de
                Copyright: © 2011 Ratajczak et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 1 July 2011
                : 8 July 2011
                Categories
                Research Perspective

                Cell biology
                rasgrf1,igf-1,vsel,aging,longevity
                Cell biology
                rasgrf1, igf-1, vsel, aging, longevity

                Comments

                Comment on this article