0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Numerical Discretization Methods for the Discounted Linear Quadratic Control Problem

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study focuses on the numerical discretization methods for the continuous-time discounted linear-quadratic optimal control problem (LQ-OCP) with time delays. By assuming piecewise constant inputs, we formulate the discrete system matrices of the discounted LQ-OCPs into systems of differential equations. Subsequently, we derive the discrete-time equivalent of the discounted LQ-OCP by solving these systems. This paper presents three numerical methods for solving the proposed differential equations systems: the fixed-time-step ordinary differential equation (ODE) method, the step-doubling method, and the matrix exponential method. Our numerical experiment demonstrates that all three methods accurately solve the differential equation systems. Interestingly, the step-doubling method emerges as the fastest among them while maintaining the same level of accuracy as the fixed-time-step ODE method.

          Related collections

          Author and article information

          Journal
          26 July 2024
          Article
          2407.18769
          eb21fff7-9f86-4a1b-bf29-746f427eb1b2

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          math.OC

          Numerical methods
          Numerical methods

          Comments

          Comment on this article