0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer therapy, to be subjected to further in vivo study.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia signalling through mTOR and the unfolded protein response in cancer.

          Hypoxia occurs in the majority of tumours, promoting angiogenesis, metastasis and resistance to therapy. Responses to hypoxia are orchestrated in part through activation of the hypoxia-inducible factor family of transcription factors (HIFs). Recently, two additional O(2)-sensitive signalling pathways have also been implicated: signalling through the mammalian target of rapamycin (mTOR) kinase and signalling through activation of the unfolded protein response (UPR). Although they are activated independently, growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer stem cell niche: the place to be.

            Tumors are being increasingly perceived as abnormal organs that, in many respects, recapitulate the outgrowth and differentiation patterns of normal tissues. In line with this idea is the observation that only a small fraction of tumor cells is capable of initiating a new tumor. Because of the features that these cells share with somatic stem cells, they have been termed cancer stem cells (CSC). Normal stem cells reside in a "stem cell niche" that maintains them in a stem-like state. Recent data suggest that CSCs also rely on a similar niche, dubbed the "CSC niche," which controls their self-renewal and differentiation. Moreover, CSCs can be generated by the microenvironment through induction of CSC features in more differentiated tumor cells. In addition to a role in CSC maintenance, the microenvironment is hypothesized to be involved in metastasis by induction of the epithelial-mesenchymal transition, leading to dissemination and invasion of tumor cells. The localization of secondary tumors also seems to be orchestrated by the microenvironment, which is suggested to form a premetastatic niche. Thus, the microenvironment seems to be of crucial importance for primary tumor growth as well as metastasis formation. Combined with its role in the protection of CSCs against genotoxic insults, these data strongly put forward the niche as an important target for novel therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK as a metabolic tumor suppressor: control of metabolism and cell growth.

              AMPK is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for metabolic syndrome and Type 2 diabetes. Recent studies indicate that AMPK plays a role in linking metabolic syndrome and cancer. AMPK is an essential mediator of the tumor suppressor LKB1 and could be suppressed in cancer cells containing loss-of-function mutations of LKB1 or containing active mutations of B-Raf, or in cancers associated with metabolic syndrome. The activation of AMPK reprograms cellular metabolism and enforces metabolic checkpoints by acting on mTORC1, p53, fatty acid synthase and other molecules for regulating cell growth and metabolism. In keeping with in vitro studies, recent epidemiological studies indicate that the incidence of cancer is reduced in Type 2 diabetes treated with metformin, an AMPK activator. Thus, AMPK is emerging as an interesting metabolic tumor suppressor and a promising target for cancer prevention and therapy.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                06 June 2014
                : 8
                : 701-717
                Affiliations
                Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu, Japan
                Author notes
                Correspondence: Hideko Nagasawa, Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan, Tel +81 58 230 8112, Fax +81 58 230 8112, Email hnagasawa@ 123456gifu-pu.ac.jp
                Article
                dddt-8-701
                10.2147/DDDT.S59679
                4057329
                © 2014 Narise et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine

                hypoxia, glucose deprivation, antiangiogenesis, hif-1, upr

                Comments

                Comment on this article