1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Decrease in serum leptin after prolonged physical activity in men :

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological insulinemia acutely modulates plasma leptin.

          Whether insulin acutely regulates plasma leptin in humans is controversial. We examined the dosage-response and time-course characteristics of the effect of insulin on leptin in 10 men (age 42+/-2 years [mean+/-SE]; BMI 29.3+/-2.0 kg/m2). Each individual underwent four 9-h euglycemic clamps (insulin at 20, 40, 80, and 400 mU x m[-2] x min[-1) and a control saline infusion. Although plasma glucose and insulin levels remained constant, leptin diminished from 9.1+/-3.0 to 5.9+/-2.1 ng/ml (P < 0.001) by the end of the control experiment. Conversely, plasma leptin showed a dosage-dependent increase during the insulin infusions that was evident within 30-60 min. The insulin-induced increase in leptin was proportionately lower in obese insulin-resistant men. Free fatty acids (FFAs) decreased during insulin and did not change during saline infusions. ED50 (the dose producing half-maximal effect) for insulin's effect on leptin and FFA was similar (138+/-36 vs. 102+/-24 pmol/l, respectively; P=0.11). To further define the role of physiological insulinemia, we compared the effect of a very low dosage insulin infusion (10 mU x m[-2] x min[-1]) with that of a control saline infusion in another group of 10 men (mean age 39+/-3 years; BMI 27.1+/-1.0 kg/m2). Plasma leptin remained stable during that insulin infusion, but fell by 37+/-2% in the control experiment. Thus physiological insulinemia can acutely regulate plasma leptin. Insulin could mediate the effect of caloric intake on leptin and could be a determinant of its plasma concentration. Inadequate insulin-induced leptin production in obese and insulin-resistant subjects may contribute to the development or worsening of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Model for the regulation of energy balance and adiposity by the central nervous system.

            In 1995, we described a new model for adiposity regulation. Since then, data regarding the biology of body weight regulation has accumulated at a remarkable rate and has both modified and strengthened our understanding of this homeostatic system. In this review we integrate new information into a revised model for further understanding this important regulatory process. Our model of energy homeostasis proposes that long-term adiposity-related signals such as insulin and leptin influence the neuronal activity of central effector pathways that serve as controllers of energy balance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors.

              The relationship of leptin to thyroid and sex hormones, insulin, energy intake, exercise energy expenditure, and reproductive function was assessed in 39 female athletes. They comprised elite athletes who were either amenorrheic (EAA; n = 5) or cyclic (ECA; n = 8) and recreationally active women who were either cyclic (RCA; n = 13) or taking oral contraceptives (ROC; n = 13). Leptin was significantly lower in EAA (1.7 +/- 0.2 ng/ml) than in ECA (2.9 +/- 0.3 ng/ml), RCA (5.8 +/- 0.9 ng/ml), and ROC (7.4 +/- 1.3 ng/ml). Hypoleptinemia in EAA was paralleled by reductions (P < 0.05) in caloric intake, insulin, estradiol, and thyroid hormones. Leptin increased by 40-46% (P < 0.05) in the luteal phase of the menstrual cycle in RCA and ECA. Plasma leptin was similar in the placebo and active pill phases in ROC despite a significant increase in ethinylestradiol. Leptin correlated (P < 0.05) with triiodothyronine and insulin but not with estrogen, energy intake, or exercise energy expenditure. These data suggest that in female athletes 1) leptin may be a metabolic signal that provides a link between adipose tissue, energy availability, and the reproductive axis and 2) sex hormones do not directly regulate leptin secretion.
                Bookmark

                Author and article information

                Journal
                Medicine & Science in Sports & Exercise
                Medicine & Science in Sports & Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2002
                October 2002
                : 34
                : 10
                : 1594-1599
                Article
                10.1097/00005768-200210000-00010
                eb281619-c536-4b27-9f86-6095b73e89a0
                © 2002
                History

                Comments

                Comment on this article