45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Substituted hydroxyapatite coatings of bone implants

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is a comprehensive overview and analysis of the most important advances in the field of substituted hydroxyapatite coatings.

          Abstract

          Surface modification of orthopedic and dental implants has been demonstrated to be an effective strategy to accelerate bone healing at early implantation times. Among the different alternatives, coating implants with a layer of hydroxyapatite (HAp) is one of the most used techniques, due to its excellent biocompatibility and osteoconductive behavior. The composition and crystalline structure of HAp allow for numerous ionic substitutions that provide added value, such as antibiotic properties or osteoinduction. In this article, we will review and critically analyze the most important advances in the field of substituted hydroxyapatite coatings. In recent years substituted HAp coatings have been deposited not only on orthopedic prostheses and dental implants, but also on macroporous scaffolds, thus expanding their applications towards bone regeneration therapies. Besides, the capability of substituted HAps to immobilize proteins and growth factors by non-covalent interactions has opened new possibilities for preparing hybrid coatings that foster bone healing processes. Finally, the most important in vivo outcomes will be discussed to understand the prospects of substituted HAp coatings from a clinical point of view.

          Related collections

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus

          To investigate the mechanism of inhibition of silver ions on microorganisms, two strains of bacteria, namely Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), were treated with AgNO(3) and studied using combined electron microscopy and X-ray microanalysis. Similar morphological changes occurred in both E. coli and S. aureus cells after Ag(+) treatment. The cytoplasm membrane detached from the cell wall. A remarkable electron-light region appeared in the center of the cells, which contained condensed deoxyribonucleic acid (DNA) molecules. There are many small electron-dense granules either surrounding the cell wall or depositing inside the cells. The existence of elements of silver and sulfur in the electron-dense granules and cytoplasm detected by X-ray microanalysis suggested the antibacterial mechanism of silver: DNA lost its replication ability and the protein became inactivated after Ag(+) treatment. The slighter morphological changes of S. aureus compared with E. coli recommended a defense system of S. aureus against the inhibitory effects of Ag(+) ions. Copyright 2000 John Wiley & Sons, Inc.
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.

            High-strength bioactive glass-ceramic A-W was soaked in various acellular aqueous solutions different in ion concentrations and pH. After soaking for 7 and 30 days, surface structural changes of the glass-ceramic were investigated by means of Fourier transform infrared reflection spectroscopy, thin-film x-ray diffraction, and scanning electronmicroscopic observations, in comparison with in vivo surface structural changes. So-called Tris buffer solution, pure water buffered with trishydroxymethyl-aminomethane, which had been used by various workers as a "simulated body fluid," did not reproduce the in vivo surface structural changes, i.e., apatite formation on the surface. A solution, ion concentrations and pH of which are almost equal to those of the human blood plasma--i.e., Na+ 142.0, K+ 5.0, Mg2+ 1.5, Ca2+ 2.5, Cl- 148.8, HCO3- 4.2 and PO4(2-) 1.0 mM and buffered at pH 7.25 with the trishydroxymethyl-aminomethane--most precisely reproduced in vivo surface structure change. This shows that careful selection of simulated body fluid is required for in vitro experiments. The results also support the concept that the apatite phase on the surface of glass-ceramic A-W is formed by a chemical reaction of the glass-ceramic with the Ca2+, HPO4(2-), and OH- ions in the body fluid.
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioceramics: From Concept to Clinic

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                March 4 2020
                2020
                : 8
                : 9
                : 1781-1800
                Affiliations
                [1 ]Departamento de Química en Ciencias Farmacéuticas
                [2 ]Facultad de Farmacia
                [3 ]Universidad Complutense de Madrid
                [4 ]Instituto de Investigación Sanitaria del Hospital 12 de Octubre i + 12
                [5 ]28040 Madrid
                Article
                10.1039/C9TB02710F
                7116284
                32065184
                eb2a05ab-d967-4ece-a09f-8391a9db266e
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                Related Documents Log