73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Algal Cell Factories: Approaches, Applications, and Potentials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO 2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

          We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.

            Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Carotenoids in Algae: Distributions, Biosyntheses and Functions

              For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b 6 f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Mar Drugs
                Mar Drugs
                marinedrugs
                Marine Drugs
                MDPI
                1660-3397
                13 December 2016
                December 2016
                : 14
                : 12
                : 225
                Affiliations
                [1 ]Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE, wf21@ 123456nyu.edu (W.F.); ac4793@ 123456nyu.edu (A.C.); dak9@ 123456nyu.edu (D.A.-K.); amystikou@ 123456gmail.com (A.M.)
                [2 ]Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE, bhk1@ 123456nyu.edu (B.K.); drn2@ 123456nyu.edu (D.R.N.); amnah.alzahmi@ 123456nyu.edu (A.A.)
                Author notes
                [* ]Correspondence: ksa3@ 123456nyu.edu ; Tel.: +971-2-628-4546
                Article
                marinedrugs-14-00225
                10.3390/md14120225
                5192462
                27983586
                eb37d931-7cb0-4e28-b066-581d40e1ceab
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 October 2016
                : 05 December 2016
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                algae,bioactive compound,cell factory,genetic engineering,mutagenesis,systems biology

                Comments

                Comment on this article