3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candidatus Chlorobium masyuteum,” a Novel Photoferrotrophic Green Sulfur Bacterium Enriched From a Ferruginous Meromictic Lake

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anoxygenic phototrophic bacteria can be important primary producers in some meromictic lakes. Green sulfur bacteria (GSB) have been detected in ferruginous lakes, with some evidence that they are photosynthesizing using Fe(II) as an electron donor (i.e., photoferrotrophy). However, some photoferrotrophic GSB can also utilize reduced sulfur compounds, complicating the interpretation of Fe-dependent photosynthetic primary productivity. An enrichment (BLA1) from meromictic ferruginous Brownie Lake, Minnesota, United States, contains an Fe(II)-oxidizing GSB and a metabolically flexible putative Fe(III)-reducing anaerobe. “ Candidatus Chlorobium masyuteum” grows photoautotrophically with Fe(II) and possesses the putative Fe(II) oxidase-encoding cyc2 gene also known from oxygen-dependent Fe(II)-oxidizing bacteria. It lacks genes for oxidation of reduced sulfur compounds. Its genome encodes for hydrogenases and a reverse TCA cycle that may allow it to utilize H 2 and acetate as electron donors, an inference supported by the abundance of this organism when the enrichment was supplied by these substrates and light. The anaerobe “ Candidatus Pseudopelobacter ferreus” is in low abundance (∼1%) in BLA1 and is a putative Fe(III)-reducing bacterium from the Geobacterales ord. nov. While “ Ca. C. masyuteum” is closely related to the photoferrotrophs C. ferroooxidans strain KoFox and C. phaeoferrooxidans strain KB01, it is unique at the genomic level. The main light-harvesting molecule was identified as bacteriochlorophyll c with accessory carotenoids of the chlorobactene series. BLA1 optimally oxidizes Fe(II) at a pH of 6.8, and the rate of Fe(II) oxidation was 0.63 ± 0.069 mmol day –1, comparable to other photoferrotrophic GSB cultures or enrichments. Investigation of BLA1 expands the genetic basis for phototrophic Fe(II) oxidation by GSB and highlights the role these organisms may play in Fe(II) oxidation and carbon cycling in ferruginous lakes.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Basic local alignment search tool.

          A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MUSCLE: multiple sequence alignment with high accuracy and high throughput.

              We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 July 2021
                2021
                : 12
                : 695260
                Affiliations
                [1] 1Department of Geological and Atmospheric Sciences, Iowa State University , Ames, IA, United States
                [2] 2Department of Biology, University of Minnesota Duluth , Duluth, MN, United States
                [3] 3Large Lakes Observatory, University of Minnesota Duluth , Duluth, MN, United States
                [4] 4Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences , Guangzhou, China
                Author notes

                Edited by: Lei Yan, Heilongjiang Bayi Agricultural University, China

                Reviewed by: Katharine J. Thompson, University of British Columbia, Canada; Petra Pjevac, University of Vienna, Austria

                *Correspondence: Elizabeth D. Swanner, eswanner@ 123456iastate.edu

                This article was submitted to Microbiological Chemistry and Geomicrobiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.695260
                8302410
                34305861
                eb4af29f-9715-4a1f-8c73-f0049c7bc203
                Copyright © 2021 Lambrecht, Stevenson, Sheik, Pronschinske, Tong and Swanner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 April 2021
                : 07 June 2021
                Page count
                Figures: 7, Tables: 2, Equations: 1, References: 103, Pages: 17, Words: 0
                Funding
                Funded by: National Aeronautics and Space Administration 10.13039/100000104
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                photoferrotrophy,brownie lake,meromictic,green sulfur bacterium,phototrophic fe(ii) oxidation,early earth biogeochemistry,iron cycling,geomicrobiology

                Comments

                Comment on this article