13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HPLC Analysis of Catechins, Theaflavins, and Alkaloids in Commercial Teas and Green Tea Dietary Supplements: Comparison of Water and 80% Ethanol/Water Extracts

      , , , ,
      Journal of Food Science
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simultaneous determination of all polyphenols in vegetables, fruits, and teas.

            Polyphenols, which have beneficial effects on health and occur ubiquitously in plant foods, are extremely diverse. We developed a method for simultaneously determining all the polyphenols in foodstuffs, using HPLC and a photodiode array to construct a library comprising retention times, spectra of aglycons, and respective calibration curves for 100 standard chemicals. The food was homogenized in liquid nitrogen, lyophilized, extracted with 90% methanol, and subjected to HPLC without hydrolysis. The recovery was 68-92%, and the variation in reproducibility ranged between 1 and 9%. The HPLC eluted polyphenols with good resolution within 95 min in the following order: simple polyphenols, catechins, anthocyanins, glycosides of flavones, flavonols, isoflavones and flavanones, their aglycons, anthraquinones, chalcones, and theaflavins. All the polyphenols in 63 vegetables, fruits, and teas were then examined in terms of content and class. The present method offers accuracy by avoiding the decomposition of polyphenols during hydrolysis, the ability to determine aglycons separately from glycosides, and information on simple polyphenol levels simultaneously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial and chemopreventive properties of herbs and spices.

              Herbs and spices have been used for generations by humans as food and to treat ailments. Scientific evidence is accumulating that many of these herbs and spices do have medicinal properties that alleviate symptoms or prevent disease. A growing body of research has demonstrated that the commonly used herbs and spices such as garlic, black cumin, cloves, cinnamon, thyme, allspices, bay leaves, mustard, and rosemary, possess antimicrobial properties that, in some cases, can be used therapeutically. Other spices, such as saffron, a food colorant; turmeric, a yellow colored spice; tea, either green or black, and flaxseed do contain potent phytochemicals, including carotenoids, curcumins, catechins, lignan respectively, which provide significant protection against cancer. This review discusses recent data on the antimicrobial and chemopreventive activities of some herbs and spices and their ingredients.
                Bookmark

                Author and article information

                Journal
                Journal of Food Science
                J Food Science
                Wiley-Blackwell
                0022-1147
                1750-3841
                August 2006
                August 2006
                : 71
                : 6
                : C328-C337
                Article
                10.1111/j.1750-3841.2006.00090.x
                eb4fcd41-3a81-45ff-afeb-b0a7106af205
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article