Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Long-term variability in the deposition of marine ions at west coast sites in the UK Acid Waters Monitoring Network: impacts on surface water chemistry and significance for trend determination.

1 , ,

The Science of the total environment

Read this article at

ScienceOpenPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Eight lake sites in central and south-west Scotland, north-west England and north Wales, forming part of the UK Acid Waters Monitoring Network (UKAWMN), have been studied with regard to the influence of marine ions on surface water chemistry. Since monitoring began in 1988 these sites have exhibited large and long-term variation in Cl concentration, which are consistent between regions and can be linked to inter-annual variations in wet deposition. Through regression analysis against Cl, the response of other solutes to these fluctuations has been assessed. Sites show a highly consistent pattern of Na, and Mg retention during periods of high Cl, in accordance with the 'sea-salt' mechanism of marine cation adsorption onto soil exchange sites following large marine inputs. An associated displacement of cations with non-marine sources is also observed, with one or more of non-marine Ca, labile Al and hydrogen ions exhibiting a positive relationship with Cl at all sites. The relative extent to which these are released appears not to follow a simple relationship to site acidity, and may be linked to site/region-specific geology and soil characteristics. In addition, an inverse relationship between non-marine SO4 and Cl is observed at five of the sites, and the possibility is considered that a sea-salt related process, with soil retention and subsequent release, may also operate for SO4. A mechanism that might explain this process is suggested. The impact of marine inputs on non-marine solutes, including important indicators of acidification such as pH, labile Al and non-marine SO4, has clear implications for the detection of long-term trends in acidity status and is, therefore, of particular relevance to the UKAWMN. Due to their unpredictability, and the long timescale over which they operate, fluctuations caused by marine inputs may be difficult to separate from acid deposition related long-term trends. Evidence from a longer Cl time series from mid-Wales shows that fluctuations in concentration could be linked to the North Atlantic Oscillation and might therefore be expected to exhibit a similar, decal periodicity. Currently, the UKAWMN dataset only appears long enough to represent one climatic cycle. Consequently, and since few surface water chemistry datasets in the UK extend over more than a decade, it is important that: (a) trend analyses of current data from marine-impacted areas take account of possible marine input cycles; and (b) long-term monitoring is maintained into the future so that the impact of these cycles can be better quantified, and distinguished from anthopogenically-induced long-term changes.

      Related collections

      Author and article information

      Affiliations
      [1 ] Centre for Ecology and Hydrology, Wallingford, Oxon, UK. cev@mail.nwl.ac.uk
      Journal
      Sci. Total Environ.
      The Science of the total environment
      0048-9697
      0048-9697
      Jan 29 2001
      : 265
      : 1-3
      11227259

      Comments

      Comment on this article