Lipids such as prostaglandins, leukotrienes and thromboxanes are released as a result of an inflammatory episode in pain (central and peripheral).
To measure these lipids as potential mechanistic biomarkers in neuropathic pain models, we developed a higher-throughput LC–MS/MS-based method with simultaneous detection of PGE2, PGD2, PGF2α, LTB4, TXB2 and 2-arachidonoyl glycerol in brain and spinal cord tissues. We also demonstrate that the LC–MS/MS method was more sensitive and specific in differentiating PGE2 levels in CNS tissues compared with ELISA.
In humans, lipids carry out various functions such as energy production and storage, insulation, digestion and absorption and hormone production. Out of the several lipids, prostaglandins, thromboxanes and leukotrienes play a critical role in cardiovascular diseases, allergic reactions and inflammation. Thus, it is important to monitor their levels as potential mechanistic biomarkers to effectively diagnose and treat the underlying diseases. We have successfully used a highly specific and higher-throughput mass spectrometric method to quantify these lipids in brain cells as well as in brain and spinal cord tissues from rats (pain model) and compared the data obtained in the traditional ELISA.