50
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Indirect Effects of Ploidy Suggest X Chromosome Dose, Not the X:A Ratio, Signals Sex in Drosophila

      research-article
      * , ¤
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the textbook view, the ratio of X chromosomes to autosome sets, X:A, is the primary signal specifying sexual fate in Drosophila. An alternative idea is that X chromosome number signals sex through the direct actions of several X-encoded signal element (XSE) proteins. In this alternative, the influence of autosome dose on X chromosome counting is largely indirect. Haploids (1X;1A), which possess the male number of X chromosomes but the female X:A of 1.0, and triploid intersexes (XX;AAA), which possess a female dose of two X chromosomes and the ambiguous X:A ratio of 0.67, represent critical tests of these hypotheses. To directly address the effects of ploidy in primary sex determination, we compared the responses of the signal target, the female-specific SxlPe promoter of the switch gene Sex-lethal, in haploid, diploid, and triploid embryos. We found that haploids activate SxlPe because an extra precellular nuclear division elevates total X chromosome numbers and XSE levels beyond those in diploid males. Conversely, triploid embryos cellularize one cycle earlier than diploids, causing premature cessation of SxlPe expression. This prevents XX;AAA embryos from fully engaging the autoregulatory mechanism that maintains subsequent Sxl expression, causing them to develop as sexual mosaics. We conclude that the X:A ratio predicts sexual fate, but does not actively specify it. Instead, the instructive X chromosome signal is more appropriately seen as collective XSE dose in the early embryo. Our findings reiterate that correlations between X:A ratios and cell fates in other organisms need not implicate the value of the ratio as an active signal.

          Author Summary

          In the fruit fly, Drosophila, chromosomal signals determine sex. Diploid flies with two X chromosomes are female, whereas those with one X are male. Conventionally, it is thought that the ratio of the number of X chromosomes to autosomes (X:A) constitutes the signal, because triploid flies bearing two X chromosomes and three sets of autosomes (XX;AAA) are intersexual. Under this model, the X:A signal is defined as the balance between a set of X-linked “numerator” proteins that promote female development and autosomally encoded “denominator” proteins that counteract the numerator elements. Although the X:A signal is a textbook standard, only one strong denominator element exists, and it cannot account for the effects of altered chromosome number (ploidy) on sex. To understand how X and autosome doses influence sex, we examined haploids (1X;1A) and triploids during the brief embryonic period when sex is determined. We found that ploidy affects sex indirectly by increasing in haploids, or decreasing in triploids, the number of embryonic cell cycles in which chromosomal sex is assessed. Our findings indicate that the fly sex-determination signal is more accurately viewed as a function of the number of X chromosomes rather than as a value of the X:A ratio.

          Abstract

          Sex is determined by X chromosome number rather than by the value of the X:autosome ratio in Drosophila.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein.

          Haplodiploid organisms comprise about 20% of animals. Males develop from unfertilized eggs while females are derived from fertilized eggs. The underlying mechanisms of sex determination, however, appear to be diverse and are poorly understood. We have dissected the complementary sex determiner (csd) locus in the honeybee to understand its molecular basis. In this species, csd acts as the primary sex-determining signal with several alleles segregating in populations. Males are hemizygous and females are heterozygous at this locus; nonreproducing diploid males occur when the locus is homozygous. We have characterized csd by positional cloning and repression analysis. csd alleles are highly variable and no transcription differences were found between sexes. These results establish csd as a primary signal that governs sexual development by its allelic composition. Structural similarity of csd with tra genes of Dipteran insects suggests some functional relation of what would otherwise appear to be unrelated sex-determination mechanisms.
            • Record: found
            • Abstract: found
            • Article: not found

            Xist RNA and the mechanism of X chromosome inactivation.

            Dosage compensation in mammals is achieved by the transcriptional inactivation of one X chromosome in female cells. From the time X chromosome inactivation was initially described, it was clear that several mechanisms must be precisely integrated to achieve correct regulation of this complex process. X-inactivation appears to be triggered upon differentiation, suggesting its regulation by developmental cues. Whereas any number of X chromosomes greater than one is silenced, only one X chromosome remains active. Silencing on the inactive X chromosome coincides with the acquisition of a multitude of chromatin modifications, resulting in the formation of extraordinarily stable facultative heterochromatin that is faithfully propagated through subsequent cell divisions. The integration of all these processes requires a region of the X chromosome known as the X-inactivation center, which contains the Xist gene and its cis-regulatory elements. Xist encodes an RNA molecule that plays critical roles in the choice of which X chromosome remains active, and in the initial spread and establishment of silencing on the inactive X chromosome. We are now on the threshold of discovering the factors that regulate and interact with Xist to control X-inactivation, and closer to an understanding of the molecular mechanisms that underlie this complex process.
              • Record: found
              • Abstract: found
              • Article: not found

              Vive la différence: males vs females in flies vs worms.

              For 600 million years, the two best-understood metazoan species, the nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster, have developed independent strategies for solving a biological problem faced by essentially all metazoans: how to generate two sexes in the proper proportions. The genetic program for sexual dimorphism has been a major focus of research in these two organisms almost from the moment they were chosen for study, and it may now be the best-understood general aspect of their development. In this review, we compare and contrast the strategies used for sex determination (including dosage compensation) between "the fly" and "the worm" and the way this understanding has come about. Although no overlap has been found among the molecules used by flies and worms to achieve sex determination, striking similarities have been found in the genetic strategies used by these two species to differentiate their sexes.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2007
                27 December 2007
                : 5
                : 12
                : e332
                Affiliations
                [1]Department of Biology, Texas A&M University, College Station, Texas, United States of America
                Adolf Butenandt Institute, Germany
                Author notes
                * To whom correspondence should be addressed. E-mail: jerickson@ 123456mail.bio.tamu.edu
                Article
                07-PLBI-RA-1977R1 plbi-05-12-21
                10.1371/journal.pbio.0050332
                2222971
                18162044
                eb65679f-4a2c-492f-aec8-d2275f1cc049
                Copyright: © 2007 Erickson and Quintero. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 July 2007
                : 9 November 2007
                Page count
                Pages: 10
                Categories
                Research Article
                Cell Biology
                Developmental Biology
                Evolutionary Biology
                Genetics and Genomics
                Molecular Biology
                Custom metadata
                Erickson JW, Quintero JJ (2007) Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLoS Biol 5(12): e332. doi: 10.1371/journal.pbio.0050332

                Life sciences
                Life sciences

                Comments

                Comment on this article

                Related Documents Log