39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Silico Study of Rotavirus VP7 Surface Accessible Conserved Regions for Antiviral Drug/Vaccine Design

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rotaviral diarrhoea kills about half a million children annually in developing countries and accounts for one third of diarrhea related hospitalizations. Drugs and vaccines against the rotavirus are handicapped, as in all viral diseases, by the rapid mutational changes that take place in the DNA and protein sequences rendering most of these ineffective. As of now only two vaccines are licensed and approved by the WHO (World Health Organization), but display reduced efficiencies in the underdeveloped countries where the disease is more prevalent. We approached this issue by trying to identify regions of surface exposed conserved segments on the surface glycoproteins of the virion, which may then be targeted by specific peptide vaccines. We had developed a bioinformatics protocol for these kinds of problems with reference to the influenza neuraminidase protein, which we have refined and expanded to analyze the rotavirus issue.

          Results

          Our analysis of 433 VP7 (Viral Protein 7 from rotavirus) surface protein sequences across 17 subtypes encompassing mammalian hosts using a 20D Graphical Representation and Numerical Characterization method, identified four possible highly conserved peptide segments. Solvent accessibility prediction servers were used to identify that these are predominantly surface situated. These regions analyzed through selected epitope prediction servers for their epitopic properties towards possible T-cell and B-cell activation showed good results as epitopic candidates (only dry lab confirmation).

          Conclusions

          The main reasons for the development of alternative vaccine strategies for the rotavirus are the failure of current vaccines and high production costs that inhibit their application in developing countries. We expect that it would be possible to use the protein surface exposed regions identified in our study as targets for peptide vaccines and drug designs for stable immunity against divergent strains of the rotavirus. Though this study is fully dependent on computational prediction algorithms, it provides a platform for wet lab experiments.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of continuous B-cell epitopes in an antigen using recurrent neural network.

          B-cell epitopes play a vital role in the development of peptide vaccines, in diagnosis of diseases, and also for allergy research. Experimental methods used for characterizing epitopes are time consuming and demand large resources. The availability of epitope prediction method(s) can rapidly aid experimenters in simplifying this problem. The standard feed-forward (FNN) and recurrent neural network (RNN) have been used in this study for predicting B-cell epitopes in an antigenic sequence. The networks have been trained and tested on a clean data set, which consists of 700 non-redundant B-cell epitopes obtained from Bcipep database and equal number of non-epitopes obtained randomly from Swiss-Prot database. The networks have been trained and tested at different input window length and hidden units. Maximum accuracy has been obtained using recurrent neural network (Jordan network) with a single hidden layer of 35 hidden units for window length of 16. The final network yields an overall prediction accuracy of 65.93% when tested by fivefold cross-validation. The corresponding sensitivity, specificity, and positive prediction values are 67.14, 64.71, and 65.61%, respectively. It has been observed that RNN (JE) was more successful than FNN in the prediction of B-cell epitopes. The length of the peptide is also important in the prediction of B-cell epitopes from antigenic sequences. The webserver ABCpred is freely available at www.imtech.res.in/raghava/abcpred/. Proteins 2006. (c) 2006 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PSIPRED protein structure prediction server.

            The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method. Freely available to non-commercial users at http://globin.bio.warwick.ac.uk/psipred/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Immune Epitope Database 2.0

              The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course of 4 years, the data from 180 978 experiments were curated manually from the literature, which covers ∼99% of all publicly available information on peptide epitopes mapped in infectious agents (excluding HIV) and 93% of those mapped in allergens. In addition, data that would otherwise be unavailable to the public from 129 186 experiments were submitted directly by investigators. The curation of epitopes related to autoimmunity is expected to be completed by the end of 2010. The database can be queried by epitope structure, source organism, MHC restriction, assay type or host organism, among other criteria. The database structure, as well as its querying, browsing and reporting interfaces, was completely redesigned for the IEDB 2.0 release, which became publicly available in early 2009.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                26 July 2012
                : 7
                : 7
                : e40749
                Affiliations
                [1 ]Physics Department, Jadavpur University, Kolkata, West Bengal, India
                [2 ]Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
                [3 ]Centre for Interdisciplinary Research and Education, Kolkata, West Bengal, India
                Hallym University, Republic of Korea
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AG SC AN. Performed the experiments: AG AN. Analyzed the data: AG AN. Contributed reagents/materials/analysis tools: AG AN. Wrote the paper: AG SC MCS PN AN. Original idea for experiment: MCS. Overall Guidance: PN.

                Article
                PONE-D-11-08927
                10.1371/journal.pone.0040749
                3406019
                22844409
                eb681529-82c3-4ab6-b5b1-f26f8fbf2111
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 March 2012
                : 12 June 2012
                Page count
                Pages: 12
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Computational Biology
                Macromolecular Structure Analysis
                Protein Structure
                Biological Data Management
                Sequence Analysis
                Microbiology
                Virology
                Antivirals
                Emerging Viral Diseases
                Viral Evolution
                Viral Vaccines
                Microbial Evolution
                Microbial Mutation
                Theoretical Biology
                Medicine
                Clinical Immunology
                Immunity
                Vaccination
                Vaccine Development
                Public Health
                Child Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article