Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Objective

      To conduct a systematic review and meta-analysis of prices of healthier versus less healthy foods/diet patterns while accounting for key sources of heterogeneity.

      Data sources

      MEDLINE (2000–2011), supplemented with expert consultations and hand reviews of reference lists and related citations.

      Design

      Studies reviewed independently and in duplicate were included if reporting mean retail price of foods or diet patterns stratified by healthfulness. We extracted, in duplicate, mean prices and their uncertainties of healthier and less healthy foods/diet patterns and rated the intensity of health differences for each comparison (range 1–10). Prices were adjusted for inflation and the World Bank purchasing power parity, and standardised to the international dollar (defined as US$1) in 2011. Using random effects models, we quantified price differences of healthier versus less healthy options for specific food types, diet patterns and units of price (serving, day and calorie). Statistical heterogeneity was quantified using I 2 statistics.

      Results

      27 studies from 10 countries met the inclusion criteria. Among food groups, meats/protein had largest price differences: healthier options cost $0.29/serving (95% CI $0.19 to $0.40) and $0.47/200 kcal ($0.42 to $0.53) more than less healthy options. Price differences per serving for healthier versus less healthy foods were smaller among grains ($0.03), dairy (−$0.004), snacks/sweets ($0.12) and fats/oils ($0.02; p<0.05 each) and not significant for soda/juice ($0.11, p=0.64). Comparing extremes (top vs bottom quantile) of food-based diet patterns, healthier diets cost $1.48/day ($1.01 to $1.95) and $1.54/2000 kcal ($1.15 to $1.94) more. Comparing nutrient-based patterns, price per day was not significantly different (top vs bottom quantile: $0.04; p=0.916), whereas price per 2000 kcal was $1.56 ($0.61 to $2.51) more. Adjustment for intensity of differences in healthfulness yielded similar results.

      Conclusions

      This meta-analysis provides the best evidence until today of price differences of healthier vs less healthy foods/diet patterns, highlighting the challenges and opportunities for reducing financial barriers to healthy eating.

      Related collections

      Most cited references 44

      • Record: found
      • Abstract: found
      • Article: not found

      Bias in meta-analysis detected by a simple, graphical test.

      Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews. Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.

         T Sipe,  D Rennie,  D Stroup (2000)
        Because of the pressure for timely, informed decisions in public health and clinical practice and the explosion of information in the scientific literature, research results must be synthesized. Meta-analyses are increasingly used to address this problem, and they often evaluate observational studies. A workshop was held in Atlanta, Ga, in April 1997, to examine the reporting of meta-analyses of observational studies and to make recommendations to aid authors, reviewers, editors, and readers. Twenty-seven participants were selected by a steering committee, based on expertise in clinical practice, trials, statistics, epidemiology, social sciences, and biomedical editing. Deliberations of the workshop were open to other interested scientists. Funding for this activity was provided by the Centers for Disease Control and Prevention. We conducted a systematic review of the published literature on the conduct and reporting of meta-analyses in observational studies using MEDLINE, Educational Research Information Center (ERIC), PsycLIT, and the Current Index to Statistics. We also examined reference lists of the 32 studies retrieved and contacted experts in the field. Participants were assigned to small-group discussions on the subjects of bias, searching and abstracting, heterogeneity, study categorization, and statistical methods. From the material presented at the workshop, the authors developed a checklist summarizing recommendations for reporting meta-analyses of observational studies. The checklist and supporting evidence were circulated to all conference attendees and additional experts. All suggestions for revisions were addressed. The proposed checklist contains specifications for reporting of meta-analyses of observational studies in epidemiology, including background, search strategy, methods, results, discussion, and conclusion. Use of the checklist should improve the usefulness of meta-analyses for authors, reviewers, editors, readers, and decision makers. An evaluation plan is suggested and research areas are explored.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Primary prevention of cardiovascular disease with a Mediterranean diet.

          Observational cohort studies and a secondary prevention trial have shown an inverse association between adherence to the Mediterranean diet and cardiovascular risk. We conducted a randomized trial of this diet pattern for the primary prevention of cardiovascular events. In a multicenter trial in Spain, we randomly assigned participants who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly individual and group educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was the rate of major cardiovascular events (myocardial infarction, stroke, or death from cardiovascular causes). On the basis of the results of an interim analysis, the trial was stopped after a median follow-up of 4.8 years. A total of 7447 persons were enrolled (age range, 55 to 80 years); 57% were women. The two Mediterranean-diet groups had good adherence to the intervention, according to self-reported intake and biomarker analyses. A primary end-point event occurred in 288 participants. The multivariable-adjusted hazard ratios were 0.70 (95% confidence interval [CI], 0.54 to 0.92) and 0.72 (95% CI, 0.54 to 0.96) for the group assigned to a Mediterranean diet with extra-virgin olive oil (96 events) and the group assigned to a Mediterranean diet with nuts (83 events), respectively, versus the control group (109 events). No diet-related adverse effects were reported. Among persons at high cardiovascular risk, a Mediterranean diet supplemented with extra-virgin olive oil or nuts reduced the incidence of major cardiovascular events. (Funded by the Spanish government's Instituto de Salud Carlos III and others; Controlled-Trials.com number, ISRCTN35739639.).
            Bookmark

            Author and article information

            Affiliations
            [1 ]The Warren Alpert Medical School of Brown University , Providence, Rhode Island, USA
            [2 ]Department of Epidemiology, Harvard School of Public Health , Boston, Massachusetts, USA
            [3 ]Department of Nutrition, Harvard School of Public Health , Boston, Massachusetts, USA
            [4 ]Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
            Author notes
            [Correspondence to ] Mayuree Rao; mayuree_rao@ 123456brown.edu
            Journal
            BMJ Open
            BMJ Open
            bmjopen
            bmjopen
            BMJ Open
            BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
            2044-6055
            2013
            4 December 2013
            : 3
            : 12
            24309174
            3855594
            bmjopen-2013-004277
            10.1136/bmjopen-2013-004277
            Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

            This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

            Product
            Categories
            Public Health
            Research
            1506
            1724
            1714
            1703
            1701

            Medicine

            preventive medicine, social medicine, public health, health economics

            Comments

            Comment on this article