36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Throughput Sequencing and Proteomics to Identify Immunogenic Proteins of a New Pathogen: The Dirty Genome Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive.

          Methods/Principal Findings

          We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA.

          Conclusions/Significance

          This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paired-end mapping reveals extensive structural variation in the human genome.

            Structural variation of the genome involves kilobase- to megabase-sized deletions, duplications, insertions, inversions, and complex combinations of rearrangements. We introduce high-throughput and massive paired-end mapping (PEM), a large-scale genome-sequencing method to identify structural variants (SVs) approximately 3 kilobases (kb) or larger that combines the rescue and capture of paired ends of 3-kb fragments, massive 454 sequencing, and a computational approach to map DNA reads onto a reference genome. PEM was used to map SVs in an African and in a putatively European individual and identified shared and divergent SVs relative to the reference genome. Overall, we fine-mapped more than 1000 SVs and documented that the number of SVs among humans is much larger than initially hypothesized; many of the SVs potentially affect gene function. The breakpoint junction sequences of more than 200 SVs were determined with a novel pooling strategy and computational analysis. Our analysis provided insights into the mechanisms of SV formation in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solexa Ltd.

              Solexa Ltd is developing an integrated system, based on a breakthrough single molecule sequencing technology, to address a US$2 billion market that is expected to grow exponentially alongside and as a consequence of further technological enhancements. The system, software and consumables will initially be sold to research organizations, pharmaceutical companies and diagnostic companies that will sequence large regions of genomic DNA, including whole genomes, at costs several orders of magnitude below current levels. Solexa expects to launch its first product in 2006, and as it continues to make time and cost efficiencies, additional products will be launched into the expanding markets that will have broad applications in basic research through to healthcare management.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                23 December 2009
                : 4
                : 12
                : e8423
                Affiliations
                [1 ]Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
                [2 ]Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
                [3 ]Proteomics Unit, Department of Psychiatric Neurosciences, Cery, Prilly-Lausanne, Switzerland
                [4 ]Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
                Duke University, United States of America
                Author notes

                Conceived and designed the experiments: GG BMR DR. Performed the experiments: CKB CB FC CY AC. Analyzed the data: GG CKB CB FC BMR CY AC DR. Contributed reagents/materials/analysis tools: GG BMR DR. Wrote the paper: GG CKB CB. Improved the manuscript and approved the final version: FC BMR CY AC DR.

                Article
                09-PONE-RA-12317R2
                10.1371/journal.pone.0008423
                2793016
                20037647
                eb812535-3201-477d-849f-85ab3d72bf0b
                Greub et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 August 2009
                : 25 November 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Microbiology
                Biotechnology/Protein Chemistry and Proteomics
                Genetics and Genomics/Genome Projects
                Microbiology/Medical Microbiology
                Microbiology/Microbial Evolution and Genomics
                Infectious Diseases/Bacterial Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article