2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prognostic value of amyloid PET scan in normal pressure hydrocephalus

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging beta-amyloid burden in aging and dementia.

          To compare brain beta-amyloid (Abeta) burden measured with [(11)C]Pittsburgh Compound B (PIB) PET in normal aging, Alzheimer disease (AD), and other dementias. Thirty-three subjects with dementia (17 AD, 10 dementia with Lewy bodies [DLB], 6 frontotemporal dementia [FTD]), 9 subjects with mild cognitive impairment (MCI), and 27 age-matched healthy control subjects (HCs) were studied. Abeta burden was quantified using PIB distribution volume ratio. Cortical PIB binding was markedly elevated in every AD subject regardless of disease severity, generally lower and more variable in DLB, and absent in FTD, whereas subjects with MCI presented either an "AD-like" (60%) or normal pattern. Binding was greatest in the precuneus/posterior cingulate, frontal cortex, and caudate nuclei, followed by lateral temporal and parietal cortex. Six HCs (22%) showed cortical uptake despite normal neuropsychological scores. PIB binding did not correlate with dementia severity in AD or DLB but was higher in subjects with an APOE-epsilon4 allele. In DLB, binding correlated inversely with the interval from onset of cognitive impairment to diagnosis. Pittsburgh Compound B PET findings match histopathologic reports of beta-amyloid (Abeta) distribution in aging and dementia. Noninvasive longitudinal studies to better understand the role of amyloid deposition in the course of neurodegeneration and to determine if Abeta deposition in nondemented subjects is preclinical AD are now feasible. Our findings also suggest that Abeta may influence the development of dementia with Lewy bodies, and therefore strategies to reduce Abeta may benefit this condition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Seoul Neuropsychological Screening Battery-Dementia Version (SNSB-D): A Useful Tool for Assessing and Monitoring Cognitive Impairments in Dementia Patients

            The Seoul Neuropsychological Screening Battery (SNSB) is one of the standardized neuropsychological test batteries widely used in Korea. However, it may be a bit too lengthy for patients with decreased attention span; and it does not provide the score of global cognitive function (GCF), which is useful for monitoring patients longitudinally. We sought to validate a dementia version of SNSB (SNSB-D) that was shorter than the original SNSB and contained only scorable tests with a GCF score of 300. We administered SNSB-D to patients with mild cognitive impairment (MCI) (n=43) and Alzheimer's disease (AD) (n=93), and normal controls (NC) (n=77). MCI and AD groups had GCF scores significantly different from NC group, and GCF scores were able to distinguish patients with Clinical Dementia Rating of 0.5 and 1. Test-retest reliability was high, with a correlation coefficient of 0.918 for AD, 0.999 for MCI, and 0.960 for NC. The GCF score significantly correlated with the Mini-Mental State Examination (MMSE). Through ROC-curve analysis, GCF scores were found to yield more accurate diagnoses than the MMSE. The SNSB-D is a valid, reliable tool for assessing the overall cognitive function, and can be used to monitor cognitive changes in patients with dementia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias.

              Amyloid imaging with (18)F-labeled radiotracers will allow widespread use, facilitating research, diagnosis, and therapeutic development for Alzheimer disease. The purpose of the study program was to compare cortical amyloid deposition using (18)F-florbetaben and PET in controls and subjects with mild cognitive impairment (MCI), frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB), vascular dementia (VaD), Parkinson disease (PD), and Alzheimer disease (AD). One hundred nine subjects in 3 clinical studies at Austin Health were reviewed: 32 controls, 20 subjects with MCI, and 30 patients with AD, 11 with FTLD, 7 with DLB, 5 with PD, and 4 with VaD underwent PET after intravenous injection of 300 MBq of (18)F-florbetaben. Standardized uptake value ratios (SUVR) using the cerebellar cortex as a reference region were calculated between 90 and 110 min after injection. When compared with the other groups, AD patients demonstrated significantly higher SUVRs (P < 0.0001) in neocortical areas. Most AD patients (96%) and 60% of MCI subjects showed diffuse cortical (18)F-florbetaben retention. In contrast, only 9% of FTLD, 25% of VaD, 29% of DLB, and no PD patients and 16% of controls showed cortical binding. Although there was a correlation between Mini Mental State Examination and β-amyloid burden in the MCI group, no correlation was observed in controls, FTLD or AD. (18)F-florbetaben had high sensitivity for AD, clearly distinguished patients with FTLD from AD, and provided results comparable to those reported with (11)C-Pittsburgh Compound B in a variety of neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Journal of Neurology
                J Neurol
                Springer Nature
                0340-5354
                1432-1459
                January 2018
                November 11 2017
                January 2018
                : 265
                : 1
                : 63-73
                Article
                10.1007/s00415-017-8650-5
                eb845ccf-260c-4a2e-8a32-a0ee02af1512
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article