39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      B cell depletion reduces the development of atherosclerosis in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          B cell depletion significantly reduces the burden of several immune-mediated diseases. However, B cell activation has been until now associated with a protection against atherosclerosis, suggesting that B cell–depleting therapies would enhance cardiovascular risk. We unexpectedly show that mature B cell depletion using a CD20-specific monoclonal antibody induces a significant reduction of atherosclerosis in various mouse models of the disease. This treatment preserves the production of natural and potentially protective anti–oxidized low-density lipoprotein (oxLDL) IgM autoantibodies over IgG type anti-oxLDL antibodies, and markedly reduces pathogenic T cell activation. B cell depletion diminished T cell–derived IFN-γ secretion and enhanced production of IL-17; neutralization of the latter abrogated CD20 antibody–mediated atheroprotection. These results challenge the current paradigm that B cell activation plays an overall protective role in atherogenesis and identify new antiatherogenic strategies based on B cell modulation.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokines in atherosclerosis: pathogenic and regulatory pathways.

          Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Innate Mononuclear Phagocyte Network Depletes B Lymphocytes through Fc Receptor–dependent Mechanisms during Anti-CD20 Antibody Immunotherapy

            Anti-CD20 antibody immunotherapy effectively treats non-Hodgkin's lymphoma and autoimmune disease. However, the cellular and molecular pathways for B cell depletion remain undefined because human mechanistic studies are limited. Proposed mechanisms include antibody-, effector cell–, and complement-dependent cytotoxicity, the disruption of CD20 signaling pathways, and the induction of apoptosis. To identify the mechanisms for B cell depletion in vivo, a new mouse model for anti-CD20 immunotherapy was developed using a panel of twelve mouse anti–mouse CD20 monoclonal antibodies representing all four immunoglobulin G isotypes. Anti-CD20 antibodies rapidly depleted the vast majority of circulating and tissue B cells in an isotype-restricted manner that was completely dependent on effector cell Fc receptor expression. B cell depletion used both FcγRI- and FcγRIII-dependent pathways, whereas B cells were not eliminated in FcR common γ chain–deficient mice. Monocytes were the dominant effector cells for B cell depletion, with no demonstrable role for T or natural killer cells. Although most anti-CD20 antibodies activated complement in vitro, B cell depletion was completely effective in mice with genetic deficiencies in C3, C4, or C1q complement components. That the innate monocyte network depletes B cells through FcγR-dependent pathways during anti-CD20 immunotherapy has important clinical implications for anti-CD20 and other antibody-based therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay.

              A simple, general procedure is described for the determination of the dissociation constant (KD) of antigen-antibody equilibria in solution. First the monoclonal antibody is incubated in solution with the antigen until the equilibrium is reached; then the proportion of antibody which remains unsaturated at equilibrium is measured by a classical indirect ELISA. The experimental values of KD found by this ELISA procedure for 2 monoclonal antibodies are shown to be very close to those obtained by conventional methods (immunoprecipitation of the radiolabeled antigen, or fluorescence transfer). Moreover, it is shown that, provided the measurements are made under conditions where the total antigen concentration is in large excess over the total antibody concentration, the dissociation constant of antibody-antigen complexes can be determined even with crude preparations of monoclonal antibody. The sensitivity of the ELISA used permits the detection of very small concentrations of antibody and the determination of KD values as small as 10(-9) M. This method also offers the great advantage of dealing with unmodified molecules since no labeling of either the antigen or the antibody is required.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                2 August 2010
                : 207
                : 8
                : 1579-1587
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, 75015 Paris, France
                [2 ]Assistance Publique–Hôpitaux de Paris, Saint-Antoine Hospital, 75012 Paris, France
                [3 ]Department of Immunology, Duke University Medical Center, Durham, NC 27710
                [4 ]INSERM, Unit 976, Skin Research Center, Saint Louis Hospital, 75475 Paris, France
                [5 ]Center for Molecular Medicine of the Austrian Academy of Sciences and [6 ]Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
                [7 ]Ludwig Institute for Cancer Research and [8 ]Cellular Genetics Unit, Université de Louvain, 1200 Brussels, Belgium
                [9 ]Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, England, UK
                Author notes

                H. Ait-Oufella and O. Herbin contributed equally to this paper.

                Article
                20100155
                10.1084/jem.20100155
                2916123
                20603314
                eb996a47-3e22-4b0c-b107-c2f13b9ee5a2
                © 2010 Ait-Oufella et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 25 January 2010
                : 3 June 2010
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article