3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in Scarb1-Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective- We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in Scarb1-/- mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in Scarb1-/- mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function. Approach and Results- Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in Scarb1-/- TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14-3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in Scarb1-/- mice (hazard ratio, 0.329; 95% CI, 0.180-0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in Scarb1-/- TAC mice. Scarb1-/- sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in Scarb1-/- TAC mice. Increased oxidative stress and reduced antioxidant defense systems in Scarb1-/- mice were rescued by AdSR-BI transfer. Conclusions- The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.

          Related collections

          Author and article information

          Journal
          Arterioscler Thromb Vasc Biol
          Arteriosclerosis, thrombosis, and vascular biology
          Ovid Technologies (Wolters Kluwer Health)
          1524-4636
          1079-5642
          September 2018
          : 38
          : 9
          Affiliations
          [1 ] From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.).
          [2 ] Experimental Cardiology, Department of Cardiovascular Sciences (E.L.R.), Catholic University of Leuven, Belgium.
          [3 ] Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (E.L.R.).
          Article
          ATVBAHA.118.310946
          10.1161/ATVBAHA.118.310946
          29976771
          eb9d3995-910d-488c-9060-f4d3af14a9fe
          History

          apoptosis,constriction,heart failure,hypotension,oxidative stress

          Comments

          Comment on this article