1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel sst(4)-selective somatostatin (SRIF) agonists. 3. Analogues amenable to radiolabeling.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After our discovery that H-c[Cys-Phe-Phe-DNal-Lys-Thr-Phe-Cys]-OH (ODN-8) had high affinity and marginal selectivity for human sst(3) (part 2 of this series: Erchegyi et al. J. Med. Chem., preceding paper in this issue)(11) and that H-c[Cys-Phe-Phe-DTrp-Lys-Thr-Phe-Cys]-OH (ODT-8, 3) had high affinity and marginal selectivity for human sst(4), that H-c[Cys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH had high affinity for all sst's except for sst(1), and that H-c[Cys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH had high affinity for sst(4) (IC(50) = 2.1 nM), with more than 50-fold selectivity toward the other receptors (parts 1 and 2 of this series: Rivier et al. and Erchegyi et al. J. Med. Chem., preceding papers in this issue), we found H-c[Cys-Phe-Phe-Trp-Lys-Thr-Phe-Cys]-OH (OLT-8, 2), H-c[Cys-Phe-Phe-L-threo-beta-MeTrp-Lys-Thr-Phe-Cys]-OH (4) and H-c[Cys-Phe-Phe-D-threo-beta-MeTrp-Lys-Thr-Phe-Cys]-OH (5) to have very high affinity for sst(4) (IC(50) = 0.7, 1.8, and 4.0 nM, respectively) and 5- to 10-fold selectivity versus the other sst's. From earlier work, we concluded that an l-amino acid at position 8 and a tyrosine or 4-aminophenylalanine substitution at position 7 may lead to high sst(4) selectivity. In fact, [Tyr(7)]-2 (6) and [Tyr(7)]-3 (7) show ca. 5-fold selectivity for sst(4), and [Aph(7)]-2 (8) and [Aph(7)]-3 (9) have high sst(4) affinity (IC(50) = 1.2 and 0.88 nM, respectively) and selectivity, suggesting that indeed an l-residue at position 8 will direct selectivity toward sst(4). Unexpectedly, [Ala(7)]-2 (10) and [Ala(7)]-3 (11) have very high sst(4) affinity (IC(50) = 0.84 and 0.98 nM, respectively) and selectivity (>600- and 200-fold, respectively). The combination of Tyr(2) and dTrp(8) in analogues 14 and 22 did not affect the affinity of the analogues for sst(4) (IC(50) = 1.2 and 1.1 nM, respectively) but resulted in loss of selectivity, whereas the combination of Tyr(2) and LTrp(8) in H-Tyr-c[Cys-Phe-Aph-Trp-Lys-Thr-Phe-Cys]-OH (13) and H-Tyr-c[Cys-Phe-Ala-Trp-Lys-Thr-Phe-Cys]-OH(19) retained high affinity (IC(50) = 1.9 and 1.98 nM, respectively) and sst(4) selectivity (>50 and >250, respectively). Interestingly, the same substitutions at positions 2 and 7, with l-threo-beta-MeTrp at position 8, yielded a much less selective analogue (20). Carbamoylation of the N-terminus of most of these analogues resulted in slightly improved affinity, selectivity, or both. Other amino acid substitutions in this series, such as those with Amp (25, 26), Orn (27), or IAmp (29) at position 7, were also tolerated but with a 2- to 3-fold loss of affinity and concomitant loss of selectivity. Analogous peptides with a tyrosine at position 11 (31-36) were less selective than the corresponding peptides with a tyrosine at position 2. Several analogues in this series compared favorably with the non-peptide L-803,087 (37) in terms of affinity and selectivity. Analogues 8, 10, and 21 potently inhibited the forskolin-stimulated cAMP production in sst(4)-transfected cells, therefore acting as full agonists. Cold monoiodination of 19 yielded 21, with retention of high sst(4) selectivity and affinity (IC(50) = 3.5 nM). (125)Iodinated 19 selectively binds to sst(4)-transfected cells but not to sst(1-3)- or sst(5)-transfected cells. Binding in sst(4)-transfected cells was completely displaced by SRIF-28 or the sst(4)-selective L-803,087.

          Related collections

          Author and article information

          Journal
          J. Med. Chem.
          Journal of medicinal chemistry
          American Chemical Society (ACS)
          0022-2623
          0022-2623
          Dec 18 2003
          : 46
          : 26
          Affiliations
          [1 ] The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
          Article
          10.1021/jm030245x
          14667214
          eba23b29-86f3-41ac-a60c-8d367b5e8b0e
          History

          Comments

          Comment on this article