25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      BeyondGenera Palmarum: progress and prospects in palm systematics

      ,
      Botanical Journal of the Linnean Society
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Hyperdominance in the Amazonian tree flora.

          The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species--less diverse than the North American tree flora--accounts for half of the world's most diverse tree community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sympatric speciation in palms on an oceanic island.

            The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms

              Background Understanding how biodiversity is shaped through time is a fundamental question in biology. Even though tropical rain forests (TRF) represent the most diverse terrestrial biomes on the planet, the timing, location and mechanisms of their diversification remain poorly understood. Molecular phylogenies are valuable tools for exploring these issues, but to date most studies have focused only on recent time scales, which minimises their explanatory potential. In order to provide a long-term view of TRF diversification, we constructed the first complete genus-level dated phylogeny of a largely TRF-restricted plant family with a known history dating back to the Cretaceous. Palms (Arecaceae/Palmae) are one of the most characteristic and ecologically important components of TRF worldwide, and represent a model group for the investigation of TRF evolution. Results We provide evidence that diversification of extant lineages of palms started during the mid-Cretaceous period about 100 million years ago. Ancestral biome and area reconstructions for the whole family strongly support the hypothesis that palms diversified in a TRF-like environment at northern latitudes. Finally, our results suggest that palms conform to a constant diversification model (the 'museum' model or Yule process), at least until the Neogene, with no evidence for any change in diversification rates even through the Cretaceous/Paleogene mass extinction event. Conclusions Because palms are restricted to TRF and assuming biome conservatism over time, our results suggest the presence of a TRF-like biome in the mid-Cretaceous period of Laurasia, consistent with controversial fossil evidence of the earliest TRF. Throughout its history, the TRF biome is thought to have been highly dynamic and to have fluctuated greatly in extent, but it has persisted even during climatically unfavourable periods. This may have allowed old lineages to survive and contribute to the steady accumulation of diversity over time. In contrast to other plant studies, our results suggest that ancient and steady evolutionary processes dating back to the mid-Cretaceous period can contribute, at least in part, to present day species richness in TRF.
                Bookmark

                Author and article information

                Journal
                Botanical Journal of the Linnean Society
                Bot. J. Linn. Soc.
                Wiley-Blackwell
                00244074
                October 2016
                October 15 2016
                : 182
                : 2
                : 207-233
                Article
                10.1111/boj.12401
                ebb0500a-33c3-43fa-b39e-52e8394454d0
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article