21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      iVikodak—A Platform and Standard Workflow for Inferring, Analyzing, Comparing, and Visualizing the Functional Potential of Microbial Communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The objectives of any metagenomic study typically include identification of resident microbes and their relative proportions (taxonomic analysis), profiling functional diversity (functional analysis), and comparing the identified microbes and functions with available metadata (comparative metagenomics). Given the advantage of cost-effectiveness and convenient data-size, amplicon-based sequencing has remained the technology of choice for exploring phylogenetic diversity of an environment. A recent school of thought, employing the existing genome annotation information for inferring functional capacity of an identified microbiome community, has given a promising alternative to Whole Genome Shotgun sequencing for functional analysis. Although a handful of tools are currently available for function inference, their scope, functionality and utility has essentially remained limited. Need for a comprehensive framework that expands upon the existing scope and enables a standardized workflow for function inference, analysis, and visualization, is therefore felt.

          Methods: We present iVikodak, a multi-modular web-platform that hosts a logically inter-connected repertoire of functional inference and analysis tools, coupled with a comprehensive visualization interface. iVikodak is equipped with microbial co-inhabitance pattern driven published algorithms along with multiple updated databases of various curated microbe-function maps. It also features an advanced task management and result sharing system through introduction of personalized and portable dashboards.

          Results: In addition to inferring functions from 16S rRNA gene data, iVikodak enables (a) an in-depth analysis of specific functions of interest (b) identification of microbes contributing to various functions (c) microbial interaction patterns through function-driven correlation networks, and (d) simultaneous functional comparison between multiple microbial communities. We have bench-marked iVikodak through multiple case studies and comparisons with existing state of art. We also introduce the concept of a public repository which provides a first of its kind community-driven framework for scientific data analytics, collaboration and sharing in this area of microbiome research.

          Conclusion: Developed using modern design and task management practices, iVikodak provides a multi-modular, yet inter-operable, one-stop framework, that intends to simplify the entire approach toward inferred function analysis. It is anticipated to serve as a significant value addition to the existing space of functional metagenomics.

          iVikodak web-server may be freely accessed at https://web.rniapps.net/iVikodak/.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          D³: Data-Driven Documents.

          Data-Driven Documents (D3) is a novel representation-transparent approach to visualization for the web. Rather than hide the underlying scenegraph within a toolkit-specific abstraction, D3 enables direct inspection and manipulation of a native representation: the standard document object model (DOM). With D3, designers selectively bind input data to arbitrary document elements, applying dynamic transforms to both generate and modify content. We show how representational transparency improves expressiveness and better integrates with developer tools than prior approaches, while offering comparable notational efficiency and retaining powerful declarative components. Immediate evaluation of operators further simplifies debugging and allows iterative development. Additionally, we demonstrate how D3 transforms naturally enable animation and interaction with dramatic performance improvements over intermediate representations. © 2010 IEEE
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TIGRFAMs database of protein families.

            TIGRFAMs is a collection of manually curated protein families consisting of hidden Markov models (HMMs), multiple sequence alignments, commentary, Gene Ontology (GO) assignments, literature references and pointers to related TIGRFAMs, Pfam and InterPro models. These models are designed to support both automated and manually curated annotation of genomes. TIGRFAMs contains models of full-length proteins and shorter regions at the levels of superfamilies, subfamilies and equivalogs, where equivalogs are sets of homologous proteins conserved with respect to function since their last common ancestor. The scope of each model is set by raising or lowering cutoff scores and choosing members of the seed alignment to group proteins sharing specific function (equivalog) or more general properties. The overall goal is to provide information with maximum utility for the annotation process. TIGRFAMs is thus complementary to Pfam, whose models typically achieve broad coverage across distant homologs but end at the boundaries of conserved structural domains. The database currently contains over 1600 protein families. TIGRFAMs is available for searching or downloading at www.tigr.org/TIGRFAMs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions

              Abstract Calypso is an easy-to-use online software suite that allows non-expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment-microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. Availability and Implementation: The web-interface is accessible via http://cgenome.net/calypso/. The software is programmed in Java, PERL and R and the source code is available from Zenodo (https://zenodo.org/record/50931). The software is freely available for non-commercial users. Contact: l.krause@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                14 January 2019
                2018
                : 9
                : 3336
                Affiliations
                Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services , Pune, India
                Author notes

                Edited by: Qi Zhao, Liaoning University, China

                Reviewed by: Yan Zhao, China University of Mining and Technology, China; Richard Allen White III, RAW Molecular Systems LLC, United States

                *Correspondence: Sharmila S. Mande sharmila.mande@ 123456tcs.com

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.03336
                6339920
                30692979
                ebba6ff2-2967-4f5e-b9c9-9e9130eaf24c
                Copyright © 2019 Nagpal, Haque, Singh and Mande.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 October 2018
                : 24 December 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 52, Pages: 15, Words: 9739
                Categories
                Microbiology
                Technology Report

                Microbiology & Virology
                inferred functions,16s metagenome,functional metagenomics,functions of microbial communities,microbiome analysis,visualization,data analyses

                Comments

                Comment on this article