13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Distinct Type of Pilus from the Human Microbiome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The C-type lectin-like domain superfamily.

          The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human microbiome in health and disease.

              Mammals are complex assemblages of mammalian and bacterial cells organized into functional organs, tissues, and cellular communities. Human biology can no longer concern itself only with human cells: Microbiomes at different body sites and functional metagenomics must be considered part of systems biology. The emergence of metagenomics has resulted in the generation of vast data sets of microbial genes and pathways present in different body habitats. The profound differences between microbiomes in various body sites reveal how metagenomes contribute to tissue and organ function. As next-generation DNA-sequencing methods provide whole-metagenome data in addition to gene-expression profiling, metaproteomics, and metabonomics, differences in microbial composition and function are being linked to health and disease states in different organs and tissues. Global parameters of microbial communities may provide valuable information regarding human health status and disease predisposition. More detailed knowledge of the human microbiome will yield next-generation diagnostics and therapeutics for various acute, chronic, localized, and systemic human diseases.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                April 2016
                April 2016
                : 165
                : 3
                : 690-703
                Article
                10.1016/j.cell.2016.03.016
                4842110
                27062925
                ebd36529-c8aa-4afe-b3c7-052e8b890ca7
                © 2016
                History

                Comments

                Comment on this article