18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Caenorhabditis elegans Histone Deacetylase hda-1 Is Required for Morphogenesis of the Vulva and LIN-12/Notch-Mediated Specification of Uterine Cell Fates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1 , a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections ( i.e., no uterine-seam cell). We characterized the vulval defects by using cell fate-specific markers and found that hda-1 is necessary for the specification of all seven vulval cell types. The analysis of the vulval-uterine connection defect revealed that hda-1 is required for the differentiation of the gonadal anchor cell (AC), which in turn induces ventral uterine granddaughters to adopt π fates, leading to the formation of the uterine-seam cell. Consistent with these results, hda-1 is expressed in the vulva and AC. A search for hda-1 target genes revealed that fos-1 ( fos proto-oncogene family) acts downstream of hda-1 in vulval cells, whereas egl-43 ( evi1 proto-oncogene family) and nhr-67 (tailless homolog, NHR family) mediate hda-1 function in the AC. Furthermore, we showed that AC expression of hda-1 plays a crucial role in the regulation of the lin-12/Notch ligand lag-2 to specify π cell fates. These results demonstrate the pivotal role of hda-1 in the formation of the vulva and the vulval-uterine connection. Given that hda-1 homologs are conserved across the phyla, our findings are likely to provide a better understanding of HDAC1 function in development and disease.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.

          We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities.

            ATP-dependent chromatin-remodeling complexes are known to facilitate transcriptional activation by opening chromatin structures. We report a novel human complex, named NURD, which contains not only ATP-dependent nucleosome disruption activity, but also histone deacetylase activity, which usually associates with transcriptional repression. The deacetylation is stimulated by ATP on nucleosomal templates, suggesting that nucleosome disruption aids the deacetylase to access its substrates. One subunit of NURD was identified as MTA1, a metastasis-associated protein with a region similar to the nuclear receptor core-pressor, N-CoR; and antibodies against NURD partially relieve transcriptional repression by thyroid hormone receptor. These results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human Mi-2/NuRD complex and gene regulation.

              The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex is an abundant deacetylase complex with a broad cellular and tissue distribution. It is unique in that it couples histone deacetylation and chromatin remodeling ATPase activities in the same complex. A decade of research has uncovered a number of interesting connections between Mi-2/NuRD and gene regulation. The subunit composition of the enzyme appears to vary with cell type and in response to physiologic signals within a tissue. Here, we review the known subunits of the complex, their connections to signaling networks, and their association with cancer. In addition, we propose a working model that integrates the known biochemical properties of the enzyme with emerging models on how chromatin structure and modification relate to gene activity.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 August 2013
                August 2013
                : 3
                : 8
                : 1363-1374
                Affiliations
                [1]Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.006999/-/DC1.

                [1 ]Corresponding author: Biology LSB-330, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada. E-mail: guptab@ 123456mcmaster.ca
                Article
                GGG_006999
                10.1534/g3.113.006999
                3737176
                23797102
                ebd38ac8-7215-4bc6-8e14-eb27c78f3c64
                Copyright © 2013 Ranawade et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 October 2012
                : 02 June 2013
                Page count
                Pages: 12
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                c. elegans,morphogenesis,reproductive system,histone deacetylase,hda-1
                Genetics
                c. elegans, morphogenesis, reproductive system, histone deacetylase, hda-1

                Comments

                Comment on this article