16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sophisticated collective foraging with minimalist agents: a swarm robotics test

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Book: not found

          The Ants

          From the Arctic to South Africa - one finds them everywhere: Ants. Making up nearly 15% of the entire terrestrial animal biomass, ants are impressive not only in quantitative terms, they also fascinate by their highly organized and complex social system. Their caste system, the division of labor, the origin of altruistic behavior and the complex forms of chemical communication makes them the most interesting group of social organisms and the main subject for sociobiologists. Not least is their ecological importance: Ants are the premier soil turners, channelers of energy and dominatrices of the insect fauna. TOC:The importance of ants.- Classification and origins.- The colony life cycle.- Altruism and the origin of the worker caste.- Colony odor and kin recognition.- Queen numbers and domination.- Communication.- Caste and division of labor.- Social homeostasis and flexibility.- Foraging and territorial strategies.- The organization of species communities.- Symbioses among ant species.- Symbioses with other animals.- Interaction with plants.- The specialized predators.- The army ants.- The fungus growers.- The harvesters.- The weaver ants.- Collecting and culturing ants.- Glossary.- Bibliography.- Index.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Optimal Foraging Theory: A Critical Review

            G Pyke (1984)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Robotics. Programmable self-assembly in a thousand-robot swarm.

              Self-assembly enables nature to build complex forms, from multicellular organisms to complex animal structures such as flocks of birds, through the interaction of vast numbers of limited and unreliable individuals. Creating this ability in engineered systems poses challenges in the design of both algorithms and physical systems that can operate at such scales. We report a system that demonstrates programmable self-assembly of complex two-dimensional shapes with a thousand-robot swarm. This was enabled by creating autonomous robots designed to operate in large groups and to cooperate through local interactions and by developing a collective algorithm for shape formation that is highly robust to the variability and error characteristic of large-scale decentralized systems. This work advances the aim of creating artificial swarms with the capabilities of natural ones.
                Bookmark

                Author and article information

                Journal
                Swarm Intelligence
                Swarm Intell
                Springer Science and Business Media LLC
                1935-3812
                1935-3820
                March 2020
                October 10 2019
                March 2020
                : 14
                : 1
                : 25-56
                Article
                10.1007/s11721-019-00176-9
                ebe1b321-a592-491b-a565-899610503ba4
                © 2020

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article