25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New macropterous leafhopper genera and species within the tribe Bonaspeiini from the Fynbos biome of South Africa (Insecta, Hemiptera, Auchenorrhyncha, Cicadellidae)

      African Invertebrates
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two new genera of macropterous leafhoppers, tentatively included in the tribe Bonaspeiini Zahniser and Dietrich (2013) from the Fynbos biome of south-western parts of South Africa, are described. These are Retevolatus gen. nov. with type species R. flexiverpus sp. nov., R. semicurviverpus sp. nov. and R. subspiniverpus sp. nov. and Flavorubivolatus gen. nov. with type species F. glabriverpus sp. nov. and F. tensiverpus sp. nov. and F. curtiverpus sp. nov. Collection records and distribution modelling confirmed that species of both genera occur within a confined region of south-western parts of South Africa.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Wolbachia: more than just a bug in insects genitals.

          Research on the intracellular bacterial symbiont Wolbachia has grown on many levels, providing interesting insights on various aspects of the microbe's biology. Although data from fully sequenced genomes of different Wolbachia strains and from experimental studies of host-microbe interactions continue to arise, most of the molecular mechanisms employed by Wolbachia to manipulate the host cytoplasmic machinery and to ensure vertical transmission are yet to be discovered. Apart from the well-established role of Wolbachia in triggering reproductive alterations, a new fascinating aspect is emerging, related to the ecological benefits that the symbiont provides to the host. The mutualistic relationship of Wolbachia strains with disease vectors remains among the top research priorities with new insights having an impact on putative anti-filarial strategies. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae)

            The classification of the largest subfamily of leafhoppers, Deltocephalinae, including 38 tribes, 923 genera, and 6683 valid species, is reviewed and revised. An updated phylogeny of the subfamily based on molecular (28S, Histone H3) and morphological data and an expanded taxon sample (37 taxa not included in previous analyses) is presented. Based on the results of these analyses and on the morphological examination of many representatives of the subfamily, the classification of the tribes and subtribes of Deltocephalinae is revised. Complete morphological descriptions, illustrations, lists of the included genera, and notes on their distribution, ecology, and important vector species are provided for the 38 recognized tribes and 18 subtribes. A dichotomous key to the tribes is provided. All names in the taxonomic treatments are hyperlinked to online resources for individual taxa which are supported by a comprehensive database for Deltocephalinae compiled using the taxonomic database software package 3I. The online functionality includes an interactive key to tribes and subtribes and advanced database searching options. Each taxon (subspecies through subfamily) has a unique taxon webpage providing nomenclatural information, lists of included taxa, an automated description (if available), images (if available), distributional information, bibliographic references and links to outside resources. Some observations and trends regarding the history of taxonomic descriptions in Deltocephalinae are reported. Four new tribes are described: Bahitini tribe nov. (25 genera), Bonsapeiini tribe nov. (21 genera), Phlepsiini tribe nov. (4 genera), and Vartini tribe nov. (7 genera). The circumscription and morphological characterization of Scaphoideini Oman, 1943 (61 genera) is substantially revised. Eleven new species are described: Acostemma stilleri sp. nov., Arrugada linnavuorii sp. nov., Drabescus zhangi sp. nov., Parabolopona webbi sp. nov., Goniagnathus emeljanovi sp. nov., Hecalus hamiltoni sp. nov., Scaphoideus omani sp. nov., Dwightla delongi sp. nov., Abimwa knighti sp. nov., Gannia viraktamathi sp. nov., and Doratulina dmitrievi sp. nov. Some family-group level taxonomic changes are made: Platymetopiini Haupt, 1929, Anoterostemmini Haupt, 1929, and Allygidiina Dmitriev, 2006 are synonymized with Athysanini Van Duzee, 1892, syn. nov.; Procepitini Dmitriev, 2002 is synonymized with Cicadulini Van Duzee, 1892, syn. nov.; Listrophorini Boulard, 1971 is synonymized with Chiasmini Distant, 1908, syn. nov.; Adamini Linnavuori & Al-Ne’amy, 1983, Dwightlini McKamey, 2003, and Ianeirini Linnavuori, 1978 are synonymized with Selenocephalini Fieber, 1872 syn.nov., and all three are now recognized as valid subtribes in their parent tribe. New placements of many genera to tribe and subtribe are made, and these are described in individual taxon treatments. 
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting.

              Environmental factors can induce significant epigenetic changes that may also be inherited by future generations. The maternally inherited symbiont of arthropods Wolbachia pipientis is an excellent candidate as an 'environmental' factor promoting trans-generational epigenetic changes: by establishing intimate relationships with germ-line cells, epigenetic effects of Wolbachia symbiosis would be manifested as a 'maternal effect', in which infection of the mother modulates the offspring phenotype. In the leafhopper Zyginidia pullula, Wolbachia feminizes genetic males, leaving them as intersexes. With the exception of male chitinous structures that are present in the last abdominal segment, feminized males display phenotypic features that are typical of females. These include ovaries that range from a typical histological architecture to an altered structure. Methylation-sensitive random amplification of polymorphic DNA profiles show that they possess a female genomic imprint. On the other hand, some rare feminized males bear testes instead of ovaries. These specimens possess a Wolbachia density approximately four orders of magnitude lower than feminized males with ovaries and maintain a male genome-methylation pattern. Our results indicate that Wolbachia infection disrupts male imprinting, which dramatically influences the expression of genes involved in sex differentiation and development, and the alteration occurs only if Wolbachia exceeds a density threshold. Thus, a new Wolbachia's role as an environmental evolutionary force, inducing epigenetic trans-generational changes, should now be considered.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                African Invertebrates
                AI
                Pensoft Publishers
                2305-2562
                1681-5556
                January 04 2021
                January 04 2021
                : 62
                : 1
                : 1-45
                Article
                10.3897/afrinvertebr.62.54721
                ebeb402c-8351-42ae-9246-ead47dd3c4df
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article