7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells.

          Methods

          Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549) and p53-null (H1299) cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels.

          Results

          Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC 50) values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 μM and 100 μM.

          Conclusion

          Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Awakening guardian angels: drugging the p53 pathway.

          Currently, around 11 million people are living with a tumour that contains an inactivating mutation of TP53 (the human gene that encodes p53) and another 11 million have tumours in which the p53 pathway is partially abrogated through the inactivation of other signalling or effector components. The p53 pathway is therefore a prime target for new cancer drug development, and several original approaches to drug discovery that could have wide applications to drug development are being used. In one approach, molecules that activate p53 by blocking protein-protein interactions with MDM2 are in early clinical development. Remarkable progress has also been made in the development of p53-binding molecules that can rescue the function of certain p53 mutants. Finally, cell-based assays are being used to discover compounds that exploit the p53 pathway by either seeking targets and compounds that show synthetic lethality with TP53 mutations or by looking for non-genotoxic activators of the p53 response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Taxanes, microtubules and chemoresistant breast cancer.

            The taxanes, paclitaxel and docetaxel are microtubule-stabilizing agents that function primarily by interfering with spindle microtubule dynamics causing cell cycle arrest and apoptosis. However, the mechanisms underlying their action have yet to be fully elucidated. These agents have become widely recognized as active chemotherapeutic agents in the treatment of metastatic breast cancer and early-stage breast cancer with benefits gained in terms of overall survival (OS) and disease-free survival (DFS). However, even with response to taxane treatment the time to progression (TTP) is relatively short, prolonging life for a matter of months, with studies showing that patients treated with taxanes eventually relapse. This review focuses on chemoresistance to taxane treatment particularly in relation to the spindle assembly checkpoint (SAC) and dysfunctional regulation of apoptotic signaling. Since spindle microtubules are the primary drug targets for taxanes, important SAC proteins such as MAD2, BUBR1, Synuclein-gamma and Aurora A have emerged as potentially important predictive markers of taxane resistance, as have specific checkpoint proteins such as BRCA1. Moreover, overexpression of the drug efflux pump MDR-1/P-gp, altered expression of microtubule-associated proteins (MAPs) including tau, stathmin and MAP4 may help to identify those patients who are most at risk of recurrence and those patients most likely to benefit from taxane treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zinc deficiency, DNA damage and cancer risk.

               Emily Ho (2004)
              A large body of evidence suggests that a significant percentage of deaths resulting from cancer in the United States could be avoided through greater attention to proper and adequate nutrition. Although many dietary compounds have been suggested to contribute to the prevention of cancer, there is strong evidence to support the fact that zinc, a key constituent or cofactor of over 300 mammalian proteins, may be of particular importance in host defense against the initiation and progression of cancer. Remarkably, 10% of the U.S. population consumes less than half the recommended dietary allowance for zinc and are at increased risk for zinc deficiency. Zinc is known to be an essential component of DNA-binding proteins with zinc fingers, as well as copper/zinc superoxide dismutase and several proteins involved in DNA repair. Thus, zinc plays an important role in transcription factor function, antioxidant defense and DNA repair. Dietary deficiencies in zinc can contribute to single- and double-strand DNA breaks and oxidative modifications to DNA that increase risk for cancer development. This review will focus on potential mechanisms by which zinc deficiency impairs host protective mechanisms designed to protect against DNA damage, enhances susceptibility to DNA-damaging agents and ultimately increases risk for cancer.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                27 July 2015
                : 9
                : 3899-3909
                Affiliations
                [1 ]Institute of Oncology, Dokuz Eylul University, Izmir Turkey
                [2 ]Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
                [3 ]Department of Biochemistry, Firat University School of Medicine, Elazig, Turkey
                [4 ]Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey
                Author notes
                Correspondence: Hilal Kocdor, Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Inciralti, Izmir, Turkey, Tel +90 232 412 8203, Fax +90 232 278 4078, Email h.kocdor@ 123456gmail.com
                Article
                dddt-9-3899
                10.2147/DDDT.S87662
                4524380
                © 2015 Kocdor et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine

                lung cancer, zinc, docetaxel, a549, h1299

                Comments

                Comment on this article