5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timescales for such applications. Hemispheric-scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution–climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring on various spatial and temporal scales with physical, chemical, and dynamical consistency.</p>

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increase in tropospheric nitrogen dioxide over China observed from space.

              Emissions from fossil fuel combustion and biomass burning reduce local air quality and affect global tropospheric chemistry. Nitrogen oxides are emitted by all combustion processes and play a key part in the photochemically induced catalytic production of ozone, which results in summer smog and has increased levels of tropospheric ozone globally. Release of nitrogen oxide also results in nitric acid deposition, and--at least locally--increases radiative forcing effects due to the absorption of downward propagating visible light. Nitrogen oxide concentrations in many industrialized countries are expected to decrease, but rapid economic development has the potential to increase significantly the emissions of nitrogen oxides in parts of Asia. Here we present the tropospheric column amounts of nitrogen dioxide retrieved from two satellite instruments GOME and SCIAMACHY over the years 1996-2004. We find substantial reductions in nitrogen dioxide concentrations over some areas of Europe and the USA, but a highly significant increase of about 50 per cent-with an accelerating trend in annual growth rate-over the industrial areas of China, more than recent bottom-up inventories suggest.
                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2017
                October 19 2017
                : 17
                : 20
                : 12449-12474
                Article
                10.5194/acp-17-12449-2017
                5907506
                29681922
                ebf45180-ff34-47f8-8ecf-386942da4be1
                © 2017

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article