46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum Plasmonics

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical investigation of the quantum properties of surface plasmons, their role in controlling light-matter interactions at the quantum level and potential applications. Quantum plasmonics opens up a new frontier in the study of the fundamental physics of surface plasmons and the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensing with plasmonic nanosensors.

          Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of single optical plasmons in metallic nanowires coupled to quantum dots.

            Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides.

              Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 microm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.
                Bookmark

                Author and article information

                Journal
                24 December 2013
                Article
                10.1038/nphys2615
                1312.6806
                ebf5c415-5e1d-474e-b36a-cc207d65f0c8

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature Physics 9, 329 (2013)
                quant-ph cond-mat.mes-hall physics.optics

                Quantum physics & Field theory,Optical materials & Optics,Nanophysics
                Quantum physics & Field theory, Optical materials & Optics, Nanophysics

                Comments

                Comment on this article