58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ginseng Berry Extract Prevents Atherogenesis via Anti-Inflammatory Action by Upregulating Phase II Gene Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ginseng berry possesses higher ginsenoside content than its root, which has been traditionally used in herbal medicine for many human diseases, including atherosclerosis. We here examined the antiatherogenic effects of the Korean ginseng berry extract (KGBE) and investigated its underlying mechanism of action in vitro and in vivo. Administration of KGBE decreased atherosclerotic lesions, which was inversely correlated with the expression levels of phase II genes to include heme oxygenase-1 (HO-1) and glutamine-cysteine ligase (GCL). Furthermore, KGBE administration suppressed NF- κ B-mediated expression of atherogenic inflammatory genes (TNF- α , IL-1 β , iNOS, COX-2, ICAM-1, and VCAM-1), without altering serum cholesterol levels, in ApoE −/− mice fed a high fat-diet. Treatment with KGBE increased phase II gene expression and suppressed lipopolysaccharide-induced reactive oxygen species production, NF- κ B activation, and inflammatory gene expression in primary macrophages. Importantly, these cellular events were blocked by selective inhibitors of HO-1 and GCL. In addition, these inhibitors reversed the suppressive effect of KGBE on TNF- α -mediated induction of ICAM-1 and VCAM-1, resulting in decreased interaction between endothelial cells and monocytes. These results suggest that KGBE ameliorates atherosclerosis by inhibiting NF- κ B-mediated expression of atherogenic genes via upregulation of phase II enzymes and thus has therapeutic or preventive potential for atherosclerosis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation in atherosclerosis: from pathophysiology to practice.

          Until recently, most envisaged atherosclerosis as a bland arterial collection of cholesterol, complicated by smooth muscle cell accumulation. According to that concept, endothelial denuding injury led to platelet aggregation and release of platelet factors which would trigger the proliferation of smooth muscle cells in the arterial intima. These cells would then elaborate an extracellular matrix that would entrap lipoproteins, forming the nidus of the atherosclerotic plaque. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent investigations identified immune cells and mediators at work in atheromata, implicating inflammation in this disease. Multiple independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk factors for atherosclerosis and its complications with altered arterial biology. Knowledge has burgeoned regarding the operation of both innate and adaptive arms of immunity in atherogenesis, their interplay, and the balance of stimulatory and inhibitory pathways that regulate their participation in atheroma formation and complication. This revolution in our thinking about the pathophysiology of atherosclerosis has now begun to provide clinical insight and practical tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis and highlights how translation of these advances in basic science promises to change clinical practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ginseng pharmacology: multiple constituents and multiple actions.

            Ginseng is a highly valued herb in the Far East and has gained popularity in the West during the last decade. There is extensive literature on the beneficial effects of ginseng and its constituents. The major active components of ginseng are ginsenosides, a diverse group of steroidal saponins, which demonstrate the ability to target a myriad of tissues, producing an array of pharmacological responses. However, many mechanisms of ginsenoside activity still remain unknown. Since ginsenosides and other constituents of ginseng produce effects that are different from one another, and a single ginsenoside initiates multiple actions in the same tissue, the overall pharmacology of ginseng is complex. The ability of ginsenosides to independently target multireceptor systems at the plasma membrane, as well as to activate intracellular steroid receptors, may explain some pharmacological effects. This commentary aims to review selected effects of ginseng and ginsenosides and describe their possible modes of action. Structural variability of ginsenosides, structural and functional relationship to steroids, and potential targets of action are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ginseng compounds: an update on their molecular mechanisms and medical applications.

              Ginseng is one of the most widely used herbal medicines and is reported to have a wide range of therapeutic and pharmacological applications. Ginsenosides, the major pharmacologically active ingredients of ginseng, appear to be responsible for most of the activities of ginseng including vasorelaxation, antioxidation, anti-inflammation and anti-cancer. Approximately 40 ginsenoside compounds have been identified. Researchers now focus on using purified individual ginsenoside to reveal the specific mechanism of functions of ginseng instead of using whole ginseng root extracts. Individual ginsenosides may have different effects in pharmacology and mechanisms due to their different chemical structures. Among them the most commonly studied ginsenosides are Rb1, Rg1, Rg3, Re, Rd and Rh1. The molecular mechanisms and medical applications of ginsenosides have attracted much attention and hundreds of papers have been published in the last few years. The general purpose of this update is to provide information of recently described effects of ginsenosides on antioxidation, vascular system, signal transduction pathways and interaction with receptors. Their therapeutic applications in animal models and humans as well as the pharmacokinetics and toxicity of ginsenosides are also discussed in this review. This review concludes with some thoughts for future directions in the further development of ginseng compounds as effective therapeutic agents.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2012
                25 November 2012
                25 November 2012
                : 2012
                : 490301
                Affiliations
                1Vascular Homeostasis Laboratory and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Gangwon-do, Chuncheon 200-701, Republic of Korea
                2Department of Surgery, Seoul Medical Center, Seoul 131-130, Republic of Korea
                3Amorepacific Corporation R&D Center, Gyeonggi-do, Yongin 446-729, Republic of Korea
                4Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
                5Department of Biochemistry, College of Sciences, Yonsei University, Seoul 120-749, Republic of Korea
                Author notes
                *Young-Myeong Kim: ymkim@ 123456kangwon.ac.kr

                Academic Editor: Alvin J. Beitz

                Article
                10.1155/2012/490301
                3519292
                23243449
                ebfa2db3-735f-4257-b9b4-a76aa3c31e63
                Copyright © 2012 Chun-Ki Kim et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 August 2012
                : 18 October 2012
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article