27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Negative Feedback-Loop between the Oncomir Mir-24-1 and Menin Modulates the Men1 Tumorigenesis by Mimicking the “Knudson’s Second Hit”

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare hereditary cancer disorder characterized by tumors of the parathyroids, of the neuroendocrine cells, of the gastro-entero-pancreatic tract, of the anterior pituitary, and by non-endocrine neoplasms and lesions. MEN1 gene, a tumor suppressor gene, encodes menin protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors, in agreement with the Knudson’s two-hit hypothesis. In silico analysis with Target Scan, Miranda and Pictar-Vert softwares for the prediction of miRNA targets indicated miR-24-1 as capable to bind to the 3′UTR of MEN1 mRNA. We investigated this possibility by analysis of miR-24-1 expression profiles in parathyroid adenomatous tissues from MEN1 gene mutation carriers, in their sporadic non-MEN1 counterparts, and in normal parathyroid tissue. Interestingly, the MEN1 tumorigenesis seems to be under the control of a “negative feedback loop” between miR-24-1 and menin protein, that mimics the second hit of Knudson’s hypothesis and that could buffer the effect of the stochastic factors that contribute to the onset and progression of this disease. Our data show an alternative way to MEN1 tumorigenesis and, probably, to the “two-hit dogma”. The functional significance of this regulatory mechanism in MEN1 tumorigenesis is also the basis for opening future developments of RNA antagomir(s)-based strategies in the in vivo control of tumorigenesis in MEN1 carriers.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.

          MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by targeting the mRNA of protein-coding genes for either cleavage or repression of translation. The roles of miRNAs in lineage determination and proliferation as well as the location of several miRNA genes at sites of translocation breakpoints or deletions has led to the speculation that miRNAs could be important factors in the development or maintenance of the neoplastic state. Here we show that the highly malignant human brain tumor, glioblastoma, strongly over-expresses a specific miRNA, miR-21. Our studies show markedly elevated miR-21 levels in human glioblastoma tumor tissues, early-passage glioblastoma cultures, and in six established glioblastoma cell lines (A172, U87, U373, LN229, LN428, and LN308) compared with nonneoplastic fetal and adult brain tissues and compared with cultured nonneoplastic glial cells. Knockdown of miR-21 in cultured glioblastoma cells triggers activation of caspases and leads to increased apoptotic cell death. Our data suggest that aberrantly expressed miR-21 may contribute to the malignant phenotype by blocking expression of critical apoptosis-related genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutation and cancer: statistical study of retinoblastoma.

            A Knudson (1971)
            Based upon observations on 48 cases of retinoblastoma and published reports, the hypothesis is developed that retinoblastoma is a cancer caused by two mutational events. In the dominantly inherited form, one mutation is inherited via the germinal cells and the second occurs in somatic cells. In the nonhereditary form, both mutations occur in somatic cells. The second mutation produces an average of three retinoblastomas per individual inheriting the first mutation. Using Poisson statistics, one can calculate that this number (three) can explain the occasional gene carrier who gets no tumor, those who develop only unilateral tumors, and those who develop bilateral tumors, as well as explaining instances of multiple tumors in one eye. This value for the mean number of tumors occurring in genetic carriers may be used to estimate the mutation rate for each mutation. The germinal and somatic rates for the first, and the somatic rate for the second, mutation, are approximately equal. The germinal mutation may arise in some instances from a delayed mutation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced accumulation of specific microRNAs in colorectal neoplasia.

              Short non-coding RNAs are known to regulate cellular processes including development, heterochromatin formation, and genomic stability in eukaryotes. Given the impact of these processes on cellular identity, a study was undertaken to investigate possible changes in microRNA (miRNA) levels during tumorigenesis. A total of 28 different miRNA sequences was identified in a colonic adenocarcinoma and normal mucosa, including 3 novel sequences and a further 7 that had previously been cloned only from mice. Human homologues of murine miRNA sequences, miR-143 and miR-145, consistently display reduced steady-state levels of the mature miRNA at the adenomatous and cancer stages of colorectal neoplasia.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                27 June 2012
                : 7
                : 6
                : e39767
                Affiliations
                [1]Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Florence, Italy
                National Cancer Institute, National Institutes of Health, United States of America
                Author notes

                Conceived and designed the experiments: EL. Performed the experiments: EL FM GG. Analyzed the data: EL FG. Contributed reagents/materials/analysis tools: GG LC. Wrote the paper: EL MLB.

                Article
                PONE-D-12-11166
                10.1371/journal.pone.0039767
                3384621
                22761894
                ec2372a4-dc7b-4eea-9bbf-74a0d40d0d1e
                Luzi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 April 2012
                : 30 May 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biotechnology
                Genetics
                Cancer Genetics
                Epigenetics
                Genetics of Disease
                Genomics
                Molecular Cell Biology
                Systems Biology
                Medicine
                Endocrinology
                Metabolic Disorders
                Non-Clinical Medicine
                Oncology
                Basic Cancer Research
                Tumor Physiology
                Public Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article