+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Chronic renovascular disease (RVD) can lead to a progressive loss of renal function, and current treatments are inefficient. We designed a fusion of vascular endothelial growth factor (VEGF) conjugated to an elastin-like polypeptide (ELP) carrier protein with an N-terminal kidney-targeting peptide (KTP). We tested the hypothesis that KTP-ELP-VEGF therapy will effectively recover renal function with an improved targeting profile. Further, we aimed to elucidate potential mechanisms driving renal recovery. Methods: Unilateral RVD was induced in 14 pigs. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified by multidetector CT imaging. Pigs then received a single intrarenal injection of KTP-ELP-VEGF or vehicle. CT quantification of renal hemodynamics was repeated 4 weeks later, and then pigs were euthanized. Ex vivo renal microvascular (MV) density and media-to-lumen ratio, macrophage infiltration, and fibrosis were quantified. In parallel, THP-1 human monocytes were differentiated into naïve macrophages (M0) or inflammatory macrophages (M1) and incubated with VEGF, KTP-ELP, KTP-ELP-VEGF, or control media. The mRNA expression of macrophage polarization and angiogenic markers was quantified (qPCR). Results: Intrarenal KTP-ELP-VEGF improved RBF, GFR, and MV density and attenuated MV media-to-lumen ratio and renal fibrosis compared to placebo, accompanied by augmented renal M2 macrophages. In vitro, exposure to VEGF/KTP-ELP-VEGF shifted M0 macrophages to a proangiogenic M2 phenotype while M1s were nonresponsive to VEGF treatment. Conclusions: Our results support the efficacy of a new renal-specific biologic construct in recovering renal function and suggest that VEGF may directly influence macrophage phenotype as a possible mechanism to improve MV integrity and function in the stenotic kidney.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Organ targeting in vivo using phage display peptide libraries.

          Preferential homing of tumour cells and leukocytes to specific organs indicates that tissues carry unique marker molecules accessible to circulating cells. Organ-selective address molecules on endothelial surfaces have been identified for lymphocyte homing to various lymphoid organs and to tissues undergoing inflammation, and an endothelial marker responsible for tumour homing to the lungs has also been identified. Here we report a new approach to studying organ-selective targeting based on in vivo screening of random peptide sequences. Peptides capable of mediating selective localization of phage to brain and kidney blood vessels were identified, and showed up to 13-fold selectivity for these organs. One of the peptides displayed by the brain-localizing phage was synthesized and shown to specifically inhibit the localization of the homologous phage into the brain. When coated onto glutaraldehyde-fixed red blood cells, the peptide caused selective localization of intravenously injected cells into the brain. These peptide sequences represent the first step towards identifying selective endothelial markers, which may be useful in targeting cells, drugs and genes into selected tissues.
            • Record: found
            • Abstract: found
            • Article: not found

            Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.

            Mouse bone marrow-derived macrophages (BMDM) grown in M-CSF (CSF-1) have been used widely in studies of macrophage biology and the response to TLR agonists. We investigated whether similar cells could be derived from the domestic pig using human rCSF-1 and whether porcine macrophages might represent a better model of human macrophage biology. Cultivation of pig bone marrow cells for 5-7 d in presence of human rCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, and CD172a), were potent phagocytic cells, and produced TNF in response to LPS. Pig BMDM could be generated from bone marrow cells that had been stored frozen and thawed so that multiple experiments can be performed on samples from a single animal. Gene expression in pig BMDM from outbred animals responding to LPS was profiled using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely resembled the known responses of human than mouse macrophages, sharing with humans the regulation of genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20, CXCL9, CXCL11, CXCL13), and the vitamin D3-converting enzyme, Cyp27B1. Conversely, in common with published studies of human macrophages, pig BMDM did not strongly induce genes involved in arginine metabolism, nor did they produce NO. These results establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vegfa Protects the Glomerular Microvasculature in Diabetes

              Vascular endothelial growth factor A (VEGFA) expression is increased in glomeruli in the context of diabetes. Here, we tested the hypothesis that this upregulation of VEGFA protects the glomerular microvasculature in diabetes and that therefore inhibition of VEGFA will accelerate nephropathy. To determine the role of glomerular Vegfa in the development and progression of diabetic nephropathy, we used an inducible Cre-loxP gene-targeting system that enabled genetic deletion of Vegfa selectively from glomerular podocytes of wild-type or diabetic mice. Type 1 diabetes was induced in mice using streptozotocin (STZ). We then assessed the extent of glomerular dysfunction by measuring proteinuria, glomerular pathology, and glomerular cell apoptosis. Vegfa expression increased in podocytes in the STZ model of diabetes. After 7 weeks of diabetes, diabetic mice lacking Vegfa in podocytes exhibited significantly greater proteinuria with profound glomerular scarring and increased apoptosis compared with control mice with diabetes or Vegfa deletion without diabetes. Reduced local production of glomerular Vegfa in a mouse model of type 1 diabetes promotes endothelial injury accelerating the progression of glomerular injury. These results suggest that upregulation of VEGFA in diabetic kidneys protects the microvasculature from injury and that reduction of VEGFA in diabetes may be harmful.

                Author and article information

                Am J Nephrol
                American Journal of Nephrology
                S. Karger AG
                December 2020
                30 October 2020
                : 51
                : 11
                : 891-902
                aDepartment of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
                bDepartment of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
                cDepartment of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
                dDepartment of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
                eDepartment of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
                fDepartment of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
                Author notes
                *Alejandro R. Chade, Department of Physiology and Biophysics, Medicine, and Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505 (USA),
                511260 Am J Nephrol 2020;51:891–902
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 2, Pages: 12
                Laboratory Investigation: Research Article


                Comment on this article