8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin.

      International Journal of Oncology
      Animals, Antioxidants, metabolism, Carcinogens, Comet Assay, Enzyme Activation, Enzyme Inhibitors, pharmacology, Female, Gene Expression Regulation, Neoplastic, MAP Kinase Signaling System, Male, Mice, Mice, Transgenic, NF-E2-Related Factor 2, antagonists & inhibitors, Quercetin, analogs & derivatives, Response Elements, Transcription Factor AP-1, Transcriptional Activation

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quercitrin, glycosylated form of flavonoid compounds, is widely distributed in nature. Extensive studies have demonstrated that quercitrin exhibits strong antioxidant and anti-carcinogenic activities. However, the molecular mechanism is poorly understood. The present study examines the effects of quercitrin on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Quercitrin blocked TPA-induced neoplastic transformation in JB6 P+ cells. Pretreatment of JB6 cells with quercitrin down-regulated transactivation of AP-1 and NF-kappaB induced by UVB or TPA. In the skin of AP-1-luciferase transgenic mice, topical treatment of the mouse with quercitrin markedly blocked the TPA-induced AP-1 transactivation. Further studies indicated that these inhibitory actions appear to be mediated through the inhibition of MAPKs phosphorylation, including ERKs, p38 kinase, and JNKs. In addition, quercitrin stimulated the activation of NF-E2-related factor (Nrf2) and GST ARE-luciferase activity. Comet assays showed that quercitrin could block DNA damage induced by UVB. To our knowledge, these results provide the first evidence that quercitrin contributes to the inhibition of neoplastic transformation by blocking activation of the MAPK pathway and stimulation of cellular protection signaling. Moreover, to our knowledge, these findings provide the first molecular basis for the anti-carcinogenic action of quercitrin.

          Related collections

          Author and article information

          Comments

          Comment on this article