6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Theory and limits of on-demand single photon sources using plasmonic resonators: a quantized quasinormal mode approach

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum emitters coupled to plasmonic resonators are known to allow enhanced broadband Purcell factors, and such systems have been recently suggested as possible candidates for on-demand single photon sources, with fast operation speeds. However, a true single photon source has strict requirements of high efficiency (brightness) and quantum indistinguishability of the emitted photons, which can be quantified through two-photon interference experiments. To help address this problem, we employ and extend a recently developed quantized quasinormal mode approach, which rigorously quantizes arbitrarily lossy open system modes, to compute the key parameters that accurately quantify the figures of merit for plasmon-based single photon sources. We also present a quantized input-output theory to quantify the radiative and nonradiative quantum efficiencies. We exemplify the theory using a nanoplasmonic dimer resonator made up of two gold nanorods, which yields large Purcell factors and good radiative output beta factors. Considering an optically pulsed excitation scheme, we explore the key roles of pulse duration and pure dephasing on the single photon properties, and show that ultrashort pulses (sub-ps) are generally required for such structures, even for low temperature operation. We also quantify the role of the nonradiative beta factor both for single photon and two-photon emission processes. Our general approach can be applied to a wide variety of plasmon systems, including metal-dielectrics, and cavity-waveguide systems, without recourse to phenomenological quantization schemes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Single-molecule strong coupling at room temperature in plasmonic nanocavities

          Emitters placed in an optical cavity experience an environment that changes their coupling to light. In the weak-coupling regime light extraction is enhanced, but more profound effects emerge in the single-molecule strong-coupling regime where mixed light-matter states form1,2. Individual two-level emitters in such cavities become non-linear for single photons, forming key building blocks for quantum information systems as well as ultra-low power switches and lasers3–6. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complex fabrication, severely compromising their use5,7,8. Here, by scaling the cavity volume below 40 nm3 and using host-guest chemistry to align 1-10 protectively-isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from >50 plasmonic nanocavities display characteristic anticrossings, with Rabi frequencies of 300 meV for 10 molecules decreasing to 90 meV for single molecules, matching quantitative models. Statistical analysis of vibrational spectroscopy time-series and dark-field scattering spectra provide evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis9 and pathways towards manipulation of chemical bonds10.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Test of a New Type of Stellar Interferometer on Sirius

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Interfacing single photons and single quantum dots with photonic nanostructures

                Bookmark

                Author and article information

                Journal
                05 April 2019
                Article
                1904.03277
                ec43e078-e9b2-4877-8aa7-4fa521852e13

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                quant-ph

                Quantum physics & Field theory
                Quantum physics & Field theory

                Comments

                Comment on this article