5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Shell-Isolated Au Nanoparticles Functionalized with Rhodamine B Fluorophores in Helium Nanodroplets

      rapid-communication
      , ,
      The Journal of Physical Chemistry Letters
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles consisting of three different materials in a layered core@shell@shell structure are synthesized in cold helium droplets by sequential doping. Upon the formation of Au core particles, a first shell layer is formed by adding either Ar, isopropyl alcohol, or hexane. Subsequently, the droplets are doped with rhodamine B (RB) molecules; fluorescence spectra recorded upon laser excitation at 532 nm provide insight into the structure of the formed complexes. For the two-component Au@RB system, the RB fluorescence is quenched in the presence of the Au core. If an intermediate isolating shell layer is introduced (Au@shell@RB), the fluorescence increases again. The results demonstrate that shell-isolated nanoparticles can be formed inside He nanodroplets and functionalized in situ with additional molecules. As the structure of the particles depends on the pickup sequence, the approach can be exploited for the synthesis and investigation of a large variety of different combinations of plasmonic metals, intermediate layers, and molecules.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Enhancement and Quenching of Single-Molecule Fluorescence

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Localized surface plasmon resonance spectroscopy and sensing.

            Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shell-isolated nanoparticle-enhanced Raman spectroscopy.

              Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.
                Bookmark

                Author and article information

                Journal
                J Phys Chem Lett
                J Phys Chem Lett
                jz
                jpclcd
                The Journal of Physical Chemistry Letters
                American Chemical Society
                1948-7185
                14 December 2020
                14 January 2021
                : 12
                : 1
                : 145-150
                Affiliations
                Institute of Experimental Physics, Graz University of Technology , Petersgasse 16, A-8010 Graz, Austria/EU
                Author notes
                Article
                10.1021/acs.jpclett.0c03399
                7812593
                33315408
                ec4e3e33-d2a3-43d5-a430-7636d066e50b
                © 2020 The Authors. Published by American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 14 November 2020
                : 07 December 2020
                Categories
                Letter
                Custom metadata
                jz0c03399
                jz0c03399

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article