18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion.

      The Journal of Biological Chemistry
      3T3-L1 Cells, Adipocytes, cytology, physiology, Animals, Antioxidants, metabolism, CCAAT-Enhancer-Binding Protein-beta, genetics, Cell Differentiation, Cyclin A, DNA, Hydrogen Peroxide, Mice, Mitosis, Oxidants, Oxidation-Reduction, Protein Binding, RNA, Small Interfering, Reactive Oxygen Species, Sirtuin 1, Sirtuins, Stilbenes

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growth-arrested 3T3-L1 preadipocytes rapidly express CCAAT/enhancer-binding protein-beta (C/EBPbeta) upon hormonal induction of differentiation. However, the DNA binding activity of C/EBPbeta is not activated until the cells synchronously reenter S phase during the mitotic clonal expansion (MCE) phase of differentiation. In this period, C/EBPbeta is sequentially phosphorylated by MAPK and glycogen synthase kinase-3beta, inducing C/EBPbeta DNA binding activity and transcription of its target genes. Because the DNA binding activity of C/EBPbeta is further enhanced by oxidation in vitro, we investigated how redox state affects C/EBPbeta DNA binding and MCE during adipogenesis. When 3T3-L1 cells were treated with H(2)O(2) and hormonal stimuli, differentiation was accelerated with increased expression of peroxisome proliferator-activated receptor gamma. Interestingly, cell cycle progression (S to G(2)/M phase) was markedly enhanced by H(2)O(2), whereas antioxidants caused an S phase arrest during the MCE. H(2)O(2) treatment resulted in the early appearance of a punctate pattern observed by immunofluorescent staining of C/EBPbeta, which is a hallmark for C/EBPbeta binding to regulatory elements, whereas a short antioxidant treatment rapidly dispersed the centromeric localization of C/EBPbeta. Consistently, reactive oxygen species production was increased during 3T3-L1 differentiation. Our results indicate that redox-induced C/EBPbeta DNA binding activity, along with the dual phosphorylation of C/EBPbeta, is required for the MCE and terminal differentiation of adipocytes.

          Related collections

          Author and article information

          Comments

          Comment on this article