13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention : Brain morphologic changes in psychosis

      1 , 1
      Psychiatry and Clinical Neurosciences
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Rethinking schizophrenia.

          How will we view schizophrenia in 2030? Schizophrenia today is a chronic, frequently disabling mental disorder that affects about one per cent of the world's population. After a century of studying schizophrenia, the cause of the disorder remains unknown. Treatments, especially pharmacological treatments, have been in wide use for nearly half a century, yet there is little evidence that these treatments have substantially improved outcomes for most people with schizophrenia. These current unsatisfactory outcomes may change as we approach schizophrenia as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the illness. This 'rethinking' of schizophrenia as a neurodevelopmental disorder, which is profoundly different from the way we have seen this illness for the past century, yields new hope for prevention and cure over the next two decades.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology.

            The human orbitofrontal cortex is an important brain region for the processing of rewards and punishments, which is a prerequisite for the complex and flexible emotional and social behaviour which contributes to the evolutionary success of humans. Yet much remains to be discovered about the functions of this key brain region, and new evidence from functional neuroimaging and clinical neuropsychology is affording new insights into the different functions of the human orbitofrontal cortex. We review the neuroanatomical and neuropsychological literature on the human orbitofrontal cortex, and propose two distinct trends of neural activity based on a meta-analysis of neuroimaging studies. One is a mediolateral distinction, whereby medial orbitofrontal cortex activity is related to monitoring the reward value of many different reinforcers, whereas lateral orbitofrontal cortex activity is related to the evaluation of punishers which may lead to a change in ongoing behaviour. The second is a posterior-anterior distinction with more complex or abstract reinforcers (such as monetary gain and loss) represented more anteriorly in the orbitofrontal cortex than simpler reinforcers such as taste or pain. Finally, we propose new neuroimaging methods for obtaining further evidence on the localisation of function in the human orbitofrontal cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contributions of anterior cingulate cortex to behaviour

              Assessments of anterior cingulate cortex in experimental animals and humans have led to unifying theories of its structural organization and contributions to mammalian behaviour. The anterior cingulate cortex forms a large region around the rostrum of the corpus callosum that is termed the anterior executive region. This region has numerous projections into motor systems, however, since these projections originate from different parts of anterior cingulate cortex and because functional studies have shown that it does not have a uniform contribution to brain functions, the anterior executive region is further subdivided into 'affect' and 'cognition' components. The affect division includes areas 25, 33 and rostral area 24, and has extensive connections with the amygdala and periaqueductal grey, and parts of it project to autonomic brainstem motor nuclei. In addition to regulating autonomic and endocrine functions, it is involved in conditioned emotional learning, vocalizations associated with expressing internal states, assessments of motivational content and assigning emotional valence to internal and external stimuli, and maternal-infant interactions. The cognition division includes caudal areas 24' and 32', the cingulate motor areas in the cingulate sulcus and nociceptive cortex. The cingulate motor areas project to the spinal cord and red nucleus and have premotor functions, while the nociceptive area is engaged in both response selection and cognitively demanding information processing. The cingulate epilepsy syndrome provides important support of experimental animal and human functional imaging studies for the role of anterior cingulate cortex in movement, affect and social behaviours. Excessive cingulate activity in cases with seizures confirmed in anterior cingulate cortex with subdural electrode recordings, can impair consciousness, alter affective state and expression, and influence skeletomotor and autonomic activity. Interictally, patients with anterior cingulate cortex epilepsy often display psychopathic or sociopathic behaviours. In other clinical examples of elevated anterior cingulate cortex activity it may contribute to tics, obsessive-compulsive behaviours, and aberrent social behaviour. Conversely, reduced cingulate activity following infarcts or surgery can contribute to behavioural disorders including akinetic mutism, diminished self-awareness and depression, motor neglect and impaired motor initiation, reduced responses to pain, and aberrent social behaviour. The role of anterior cingulate cortex in pain responsiveness is suggested by cingulumotomy results and functional imaging studies during noxious somatic stimulation. The affect division of anterior cingulate cortex modulates autonomic activity and internal emotional responses, while the cognition division is engaged in response selection associated with skeletomotor activity and responses to noxious stimuli. Overall, anterior cingulate cortex appears to play a crucial role in initiation, motivation, and goal-directed behaviours.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                Psychiatry and Clinical Neurosciences
                Psychiatry Clin. Neurosci.
                Wiley
                13231316
                August 2018
                August 2018
                May 21 2018
                : 72
                : 8
                : 556-571
                Affiliations
                [1 ]Department of Neuropsychiatry; University of Toyama Graduate School of Medicine and Pharmaceutical Sciences; Toyama Japan
                Article
                10.1111/pcn.12670
                29717522
                ec5536d3-0b35-4758-b55d-d9aa4ee0c850
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article