10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein–Ligand Complexes in Cognate Docking

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          General and reliable description of structures and energetics in protein–ligand (PL) binding using the docking/scoring methodology has until now been elusive. We address this urgent deficiency of scoring functions (SFs) by the systematic development of corrected semiempirical quantum mechanical (SQM) methods, which correctly describe all types of noncovalent interactions and are fast enough to treat systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO) implicit solvation model in so-called “SQM/COSMO” SFs and have shown unique recognition of native ligand poses in cognate docking in four challenging PL systems, including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL complexes and compare their performance with four widely used classical SFs (Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock). We observe superior performance of the SQM/COSMO SFs and identify challenging systems. This method, due to its generality, comparability across the chemical space, and lack of need for any system-specific parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in structure-based drug design and serving as a reference method for the development of other SFs.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters

          Modern semiempirical methods are of sufficient accuracy when used in the modeling of molecules of the same type as used as reference data in the parameterization. Outside that subset, however, there is an abundance of evidence that these methods are of very limited utility. In an attempt to expand the range of applicability, a new method called PM7 has been developed. PM7 was parameterized using experimental and high-level ab initio reference data, augmented by a new type of reference data intended to better define the structure of parameter space. The resulting method was tested by modeling crystal structures and heats of formation of solids. Two changes were made to the set of approximations: a modification was made to improve the description of noncovalent interactions, and two minor errors in the NDDO formalism were rectified. Average unsigned errors (AUEs) in geometry and ΔH f for PM7 were reduced relative to PM6; for simple gas-phase organic systems, the AUE in bond lengths decreased by about 5 % and the AUE in ΔH f decreased by about 10 %; for organic solids, the AUE in ΔH f dropped by 60 % and the reduction was 33.3 % for geometries. A two-step process (PM7-TS) for calculating the heights of activation barriers has been developed. Using PM7-TS, the AUE in the barrier heights for simple organic reactions was decreased from values of 12.6 kcal/mol-1 in PM6 and 10.8 kcal/mol-1 in PM7 to 3.8 kcal/mol-1. The origins of the errors in NDDO methods have been examined, and were found to be attributable to inadequate and inaccurate reference data. This conclusion provides insight into how these methods can be improved. Electronic supplementary material The online version of this article (doi:10.1007/s00894-012-1667-x) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A critical assessment of docking programs and scoring functions.

            Docking is a computational technique that samples conformations of small molecules in protein binding sites; scoring functions are used to assess which of these conformations best complements the protein binding site. An evaluation of 10 docking programs and 37 scoring functions was conducted against eight proteins of seven protein types for three tasks: binding mode prediction, virtual screening for lead identification, and rank-ordering by affinity for lead optimization. All of the docking programs were able to generate ligand conformations similar to crystallographically determined protein/ligand complex structures for at least one of the targets. However, scoring functions were less successful at distinguishing the crystallographic conformation from the set of docked poses. Docking programs identified active compounds from a pharmaceutically relevant pool of decoy compounds; however, no single program performed well for all of the targets. For prediction of compound affinity, none of the docking programs or scoring functions made a useful prediction of ligand binding affinity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method

                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                27 July 2017
                31 July 2017
                : 2
                : 7
                : 4022-4029
                Affiliations
                []Department of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
                []Department of Physical Chemistry, Palacký University , tř. 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
                [§ ]Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Palacký University , 77146 Olomouc, Czech Republic
                Author notes
                [* ]E-mail: lepsik@ 123456uochb.cas.cz (M.L.).
                Article
                10.1021/acsomega.7b00503
                6044937
                30023710
                ec6386e5-9c3f-4606-8190-c62b8fa4ca69
                Copyright © 2017 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 24 April 2017
                : 18 July 2017
                Categories
                Article
                Custom metadata
                ao7b00503
                ao-2017-00503q

                Comments

                Comment on this article