16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review

      , , , , ,
      Frontiers in Ecology and Evolution
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.

          Related collections

          Most cited references210

          • Record: found
          • Abstract: found
          • Article: not found

          Defensive function of herbivore-induced plant volatile emissions in nature.

          Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of push-pull strategies in integrated pest management.

            Push-pull strategies involve the behavioral manipulation of insect pests and their natural enemies via the integration of stimuli that act to make the protected resource unattractive or unsuitable to the pests (push) while luring them toward an attractive source (pull) from where the pests are subsequently removed. The push and pull components are generally nontoxic. Therefore, the strategies are usually integrated with methods for population reduction, preferably biological control. Push-pull strategies maximize efficacy of behavior-manipulating stimuli through the additive and synergistic effects of integrating their use. By orchestrating a predictable distribution of pests, efficiency of population-reducing components can also be increased. The strategy is a useful tool for integrated pest management programs reducing pesticide input. We describe the principles of the strategy, list the potential components, and present case studies reviewing work on the development and use of push-pull strategies in each of the major areas of pest control.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context

                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                April 22 2021
                April 22 2021
                : 9
                Article
                10.3389/fevo.2021.641974
                ec6dac7d-c2fa-459b-a086-429b8e44a306
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article