5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Imbalance and Kidney Damage: New Study Perspectives from Animal Models to Hospitalized Patients

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) is a major public health problem worldwide and affects both elderly and young subjects. Its main consequences include the loss of renal function, leading to end-stage renal disease, an increased risk of cardiovascular disease, a significant increase in morbidity and mortality, and a decrease in health-related quality of life. This review arose in significant part from work in the authors’ laboratory, complemented by literature data, and was based on a translational approach: we studied the role of many CKD risk factors, such as hypertension, obesity, and oxidative stress/inflammation. The aim was to identify new molecular mechanisms of kidney damage to prevent it through successful behavior modifications. For this purpose, in our studies, both human and animal models were used. In the animal models, we analyzed the mechanisms of renal damage induced by hypertension (spontaneously hypertensive rats) and obesity (cafeteria diet-fed rats), showing that redox disequilibrium in plasma and tissue is extremely important in renal alteration in terms of both oxidative damage (lipid peroxidation, altered expression antioxidant enzymes) and apoptotic pathway (intrinsic/extrinsic) activation. In hemodialysis patients, we explored the correlation between the global oxidative balance and both inflammatory markers and cardiovascular risk, showing a strong correlation between the oxidative index and the blood levels of C-reactive protein and previous cardiovascular events. This multilevel approach allowed us to individually and synergistically analyze some aspects of the complex pathogenic mechanisms of CKD in order to clarify the role of the new amplified risk factors for CKD and to prepare an effective personalized prevention plan by acting on both modifiable and nonmodifiable risk factors.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          The role of antioxidants in the chemistry of oxidative stress: A review.

          This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic kidney disease and mortality risk: a systematic review.

            Current guidelines identify people with chronic kidney disease (CKD) as being at high risk for cardiovascular and all-cause mortality. Because as many as 19 million Americans may have CKD, a comprehensive summary of this risk would be potentially useful for planning public health policy. A systematic review of the association between non-dialysis-dependent CKD and the risk for all-cause and cardiovascular mortality was conducted. Patient- and study-related characteristics that influenced the magnitude of these associations also were investigated. MEDLINE and EMBASE databases were searched, and reference lists through December 2004 were consulted. Authors of 10 primary studies provided additional data. Cohort studies or cohort analyses of randomized, controlled trials that compared mortality between those with and without chronically reduced kidney function were included. Studies were excluded from review when participants were followed for < 1 yr or had ESRD. Two reviewers independently extracted data on study setting, quality, participant and renal function characteristics, and outcomes. Thirty-nine studies that followed a total of 1,371,990 participants were reviewed. The unadjusted relative risk for mortality in participants with reduced kidney function compared with those without ranged from 0.94 to 5.0 and was significantly more than 1.0 in 93% of cohorts. Among the 16 studies that provided suitable data, the absolute risk for death increased exponentially with decreasing renal function. Fourteen cohorts described the risk for mortality from reduced kidney function, after adjustment for other established risk factors. Although adjusted relative hazards were consistently lower than unadjusted relative risks (median reduction 17%), they remained significantly more than 1.0 in 71% of cohorts. This review supports current guidelines that identify individuals with CKD as being at high risk for cardiovascular mortality. Determining which interventions best offset this risk remains a health priority.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Clinical Relevance of Biomarkers of Oxidative Stress

              Abstract Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. Future Directions: Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 23, 1144–1170.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                28 November 2019
                December 2019
                : 8
                : 12
                : 594
                Affiliations
                [1 ]Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; alessandro.marrone@ 123456unical.it
                [2 ]Analysis and Research on Oxidative Stress Laboratory (LARSO), University of Calabria, 87036 Rende, Italy; daniele.larussa@ 123456unical.it
                [3 ]Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
                Author notes
                Author information
                https://orcid.org/0000-0002-9815-5195
                https://orcid.org/0000-0003-1887-2854
                Article
                antioxidants-08-00594
                10.3390/antiox8120594
                6943704
                31795160
                ec77a0a0-528e-488a-a38e-2e4cea294190
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 October 2019
                : 26 November 2019
                Categories
                Review

                chronic kidney disease,redox balance,inflammation,kidney damage

                Comments

                Comment on this article