11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle ( Wee1, Ccnd1, Rb1) and stromal-epithelial interactions ( Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy.

          The incidence of prostate cancer is frequent, occurring in almost one-third of men older than 45 years. Only a fraction of the cases reach the stages displaying clinical significance. Despite the advances in our understanding of prostate carcinogenesis and disease progression, our knowledge of this disease is still fragmented. Identification of the genes and patterns of gene expression will provide a more cohesive picture of prostate cancer biology. In this study, we performed a comprehensive gene expression analysis on 152 human samples including prostate cancer tissues, prostate tissues adjacent to tumor, and organ donor prostate tissues, obtained from men of various ages, using the Affymetrix (Santa Clara, CA) U95a, U95b, and U95c chip sets (37,777 genes and expression sequence tags). Our results confirm an alteration of gene expression in prostate cancer when comparing with nontumor adjacent prostate tissues. However, our study also indicates that the gene expression pattern in tissues adjacent to cancer is so substantially altered that it resembles a cancer field effect. We also found that gene expression patterns can be used to predict the aggressiveness of prostate cancer using a novel model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry.

            Accurate measurement of sex steroid concentrations in rodent serum is essential to evaluate mouse and rat models for sex steroid-related disorders. The aim of the present study was to develop a sensitive and specific gas chromatography-tandem mass spectrometry (GC-MS/MS) method to assess a comprehensive sex steroid profile in rodent serum. A major effort was invested in reaching an exceptionally high sensitivity for measuring serum estradiol concentrations. We established a GC-MS/MS assay with a lower limit of detection for estradiol, estrone, T, DHT, progesterone, androstenedione, and dehydroepiandrosterone of 0.3, 0.5, 4.0, 1.6, 8, 4.0, and 50 pg/mL, respectively, whereas the corresponding values for the lower limit of quantification were 0.5, 0.5, 8, 2.5, 74, 12, and 400 pg/mL, respectively. Calibration curves were linear, intra- and interassay coefficients of variation were low, and accuracy was excellent for all analytes. The established assay was used to accurately measure a comprehensive sex steroid profile in female rats and mice according to estrous cycle phase. In addition, we characterized the impact of age, sex, gonadectomy, and estradiol treatment on serum concentrations of these sex hormones in mice. In conclusion, we have established a highly sensitive and specific GC-MS/MS method to assess a comprehensive sex steroid profile in rodent serum in a single run. This GC-MS/MS assay has, to the best of our knowledge, the best detectability reported for estradiol. Our method therefore represents an ideal tool to characterize sex steroid metabolism in a variety of sex steroid-related rodent models and in human samples with low estradiol levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental biology of uterine glands.

              All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                Endocrinology
                endo
                endoc
                endo
                Endocrinology
                Endocrine Society (Washington, DC )
                0013-7227
                1945-7170
                May 2016
                10 March 2016
                10 March 2016
                : 157
                : 5
                : 2116-2128
                Affiliations
                Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
                Author notes
                Address all correspondence and requests for reprints to: Professor Philippa T. K. Saunders, PhD, FmedSci, Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, EH16 4TJ Edinburgh, United Kingdom. E-mail: p.saunders@ 123456ed.ac.uk .
                Article
                EN-15-2032
                10.1210/en.2015-2032
                4870887
                26963473
                ec8705b0-91cd-4670-8295-84618e7d6d3d

                This article has been published under the terms of the Creative Commons Attribution License (CC-BY; https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s).

                History
                : 8 December 2015
                : 7 March 2016
                Categories
                Original Research
                Reproduction-Development

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article