11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To improve the antitumor efficacy of doxorubicin (DOX) and provide novel clinical treatment of gastric cancer, halloysite nanotubes (HNTs) loaded with DOX were encapsulated by soybean phospholipid (LIP) and the formed HNTs/DOX/LIP was systematically characterized via different techniques. The in vitro anticancer activity of HNTs/DOX/LIP was examined using an MTT assay. The antitumor efficacy and biocompatibility were monitored by measuring the tumor volume and assessing the blood routine and serum biochemistry using an ectopic implantation cancer model. The results show that when the concentration of HNTs was 3 mg/mL and the concentration of DOX was 1 mg/mL the optimal DOX loading efficiency was as high as 22.01%±0.43%. In vitro drug release behavior study demonstrated that HNTs/DOX/LIP shows a pH-responsive release property with fast drug release under acidic conditions (pH =5.4). MTT assays and in vivo experimental results revealed that HNTs/DOX/LIP exhibits a significantly higher inhibitory efficacy on the growth of mouse gastric cancer cells than free DOX at the same drug concentration. In addition, the life span of tumor-bearing mice in the HNTs/DOX/LIP-treated group was obviously prolonged compared with the control groups. Moreover, HNTs/DOX/LIP possessed excellent hemocompatibility as shown in the blood and histology studies. These findings indicated that the formed HNTs/DOX/LIP possesses higher antitumor efficacy and may be used as a targeted delivery nanoplatform for targeting therapy of different types of cancer cells.

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Gold nanocages covered by smart polymers for controlled release with near-infrared light

          Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions1-3. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound to the effector. The ultraviolet light may cause damage to biological samples and is only suitable for in vitro studies because of its quick attenuation in tissue4. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls5. They can have strong absorption (for the photothermal effect) in the near-infrared (NIR) while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a NIR laser. This system works well with various effectors without involving sophiscated syntheses, and is well-suited for in vivo studies due to the high transparency of soft tissue in NIR6.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data.

            This systematic review and meta-analysis were performed to assess the efficacy and tolerability of chemotherapy in patients with advanced gastric cancer. Randomized phase II and III clinical trials on first-line chemotherapy in advanced gastric cancer were identified by electronic searches of Medline, Embase, the Cochrane Controlled Trials Register, and Cancerlit; hand searches of relevant abstract books and reference lists; and contact to experts. Meta-analysis was performed using the fixed-effect model. Overall survival, reported as hazard ratio (HR) with 95% CI, was the primary outcome measure. Analysis of chemotherapy versus best supportive care (HR = 0.39; 95% CI, 0.28 to 0.52) and combination versus single agent, mainly fluorouracil (FU) -based chemotherapy (HR = 0.83; 95% CI = 0.74 to 0.93) showed significant overall survival benefits in favor of chemotherapy and combination chemotherapy, respectively. In addition, comparisons of FU/cisplatin-containing regimens with versus without anthracyclines (HR = 0.77; 95% CI, 0.62 to 0.95) and FU/anthracycline-containing combinations with versus without cisplatin (HR = 0.83; 95% CI, 0.76 to 0.91) both demonstrated a significant survival benefit for the three-drug combination. Comparing irinotecan-containing versus nonirinotecan-containing combinations (mainly FU/cisplatin) resulted in a nonsignificant survival benefit in favor of the irinotecan-containing regimens (HR = 0.88; 95% CI, 0.73 to 1.06), but they have never been compared against a three-drug combination. Best survival results are achieved with three-drug regimens containing FU, an anthracycline, and cisplatin. Among these, regimens including FU as bolus exhibit a higher rate of toxic deaths than regimens using a continuous infusion of FU, such as epirubicin, cisplatin, and continuous-infusion FU.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery.

              We show that large surface areas exist for supramolecular chemistry on single-walled carbon nanotubes (SWNTs) prefunctionalized noncovalently or covalently by common surfactant or acid-oxidation routes. Water-soluble SWNTs with poly(ethylene glycol) (PEG) functionalization via these routes allow for surprisingly high degrees of pi-stacking of aromatic molecules, including a cancer drug (doxorubicin) with ultrahigh loading capacity, a widely used fluorescence molecule (fluorescein), and combinations of molecules. Binding of molecules to nanotubes and their release can be controlled by varying the pH. The strength of pi-stacking of aromatic molecules is dependent on nanotube diameter, leading to a method for controlling the release rate of molecules from SWNTs by using nanotube materials with suitable diameter. This work introduces the concept of "functionalization partitioning" of SWNTs, i.e., imparting multiple chemical species, such as PEG, drugs, and fluorescent tags, with different functionalities onto the surface of the same nanotube. Such chemical partitioning should open up new opportunities in chemical, biological, and medical applications of novel nanomaterials.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2018
                19 December 2017
                : 13
                : 19-30
                Affiliations
                [1 ]Department of Gastroenterology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
                [2 ]Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Rong Wan, Department of Gastroenterology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, People’s Republic of China, Tel +86 21 3612 3151, Email rongwan1970@ 123456126.com
                Qinghua Zhao, Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, People’s Republic of China, Tel +86 21 3779 8591, Email sawboneszhao@ 123456163.com
                [*]

                These authors contributed equally to this work

                Article
                ijn-13-019
                10.2147/IJN.S143928
                5741065
                29296083
                ec8c9da1-7cdb-43fb-a75b-67d5fb85904c
                © 2018 Li et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                hnts,dox,gastric cancer,drug carrier
                Molecular medicine
                hnts, dox, gastric cancer, drug carrier

                Comments

                Comment on this article