23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Axonal transport: Driving synaptic function

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of “en passant” synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Control of microtubule organization and dynamics: two ends in the limelight.

          Microtubules have fundamental roles in many essential biological processes, including cell division and intracellular transport. They assemble and disassemble from their two ends, denoted the plus end and the minus end. Significant advances have been made in our understanding of microtubule plus-end-tracking proteins (+TIPs) such as end-binding protein 1 (EB1), XMAP215, selected kinesins and dynein. By contrast, information on microtubule minus-end-targeting proteins (-TIPs), such as the calmodulin-regulated spectrin-associated proteins (CAMSAPs) and Patronin, has only recently started to emerge. Here, we review our current knowledge of factors, including microtubule-targeting agents, that associate with microtubule ends to control the dynamics and function of microtubules during the cell cycle and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cytoplasmic dynein transport machinery and its many cargoes

            Cytoplasmic dynein-1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled coil proteins — ‘activating adaptors’ — which both recruit dynein–dynactin to their cargoes and activate dynein motility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuropeptide transmission in brain circuits.

              Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                October 10 2019
                October 11 2019
                October 10 2019
                October 11 2019
                : 366
                : 6462
                : eaaw9997
                Article
                10.1126/science.aaw9997
                6996143
                31601744
                eca3a52b-3b46-4250-ae33-3f26f2e2f76f
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article