12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.

      Current biology : CB
      Elsevier BV
      D1 dopamine receptor, SCN, circadian entrainment, dopamine, dopaminergic neurons, hypothalamic circuitry, jet lag, photoentrainment, suprachiasmatic nucleus, ventral tegmental area

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Suprachiasmatic nucleus: cell autonomy and network properties.

          The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.

              Within the mammalian hypothalamus, the suprachiasmatic nucleus (SCN) contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms. By culturing cells from neonatal rat SCN on fixed microelectrode arrays, we have been able to record spontaneous action potentials from individual SCN neurons for days or weeks, revealing prominent circadian rhythms in firing rate. Despite abundant functional synapses, circadian rhythms expressed by neurons in the same culture are not synchronized. After reversible blockade of neuronal firing lasting 2.5 days, circadian firing rhythms re-emerge with unaltered phases. These data suggest that the SCN contains a large population of autonomous, single-cell circadian oscillators, and that synapses formed in vitro are neither necessary for operation of these oscillators nor sufficient for synchronizing them.
                Bookmark

                Author and article information

                Comments

                Comment on this article