61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Microarray analysis and 454 cDNA sequencing were used to investigate a centuries-old problem in regenerative biology: the basis of nerve-dependent limb regeneration in salamanders. Innervated (NR) and denervated (DL) forelimbs of Mexican axolotls were amputated and transcripts were sampled after 0, 5, and 14 days of regeneration.

          Results

          Considerable similarity was observed between NR and DL transcriptional programs at 5 and 14 days post amputation (dpa). Genes with extracellular functions that are critical to wound healing were upregulated while muscle-specific genes were downregulated. Thus, many processes that are regulated during early limb regeneration do not depend upon nerve-derived factors. The majority of the transcriptional differences between NR and DL limbs were correlated with blastema formation; cell numbers increased in NR limbs after 5 dpa and this yielded distinct transcriptional signatures of cell proliferation in NR limbs at 14 dpa. These transcriptional signatures were not observed in DL limbs. Instead, gene expression changes within DL limbs suggest more diverse and protracted wound-healing responses. 454 cDNA sequencing complemented the microarray analysis by providing deeper sampling of transcriptional programs and associated biological processes. Assembly of new 454 cDNA sequences with existing expressed sequence tag (EST) contigs from the Ambystoma EST database more than doubled (3935 to 9411) the number of non-redundant human- A. mexicanum orthologous sequences.

          Conclusion

          Many new candidate gene sequences were discovered for the first time and these will greatly enable future studies of wound healing, epigenetics, genome stability, and nerve-dependent blastema formation and outgrowth using the axolotl model.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of DNA double-strand break repair pathway choice.

          DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genesis: cluster analysis of microarray data.

            A versatile, platform independent and easy to use Java suite for large-scale gene expression analysis was developed. Genesis integrates various tools for microarray data analysis such as filters, normalization and visualization tools, distance measures as well as common clustering algorithms including hierarchical clustering, self-organizing maps, k-means, principal component analysis, and support vector machines. The results of the clustering are transparent across all implemented methods and enable the analysis of the outcome of different algorithms and parameters. Additionally, mapping of gene expression data onto chromosomal sequences was implemented to enhance promoter analysis and investigation of transcriptional control mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution.

              Ectopic expression of the four transcription factors Oct4, Sox2, c-Myc, and Klf4 is sufficient to confer a pluripotent state upon the fibroblast genome, generating induced pluripotent stem (iPS) cells. It remains unknown if nuclear reprogramming induced by these four factors globally resets epigenetic differences between differentiated and pluripotent cells. Here, using novel selection approaches, we have generated iPS cells from fibroblasts to characterize their epigenetic state. Female iPS cells showed reactivation of a somatically silenced X chromosome and underwent random X inactivation upon differentiation. Genome-wide analysis of two key histone modifications indicated that iPS cells are highly similar to ES cells. Consistent with these observations, iPS cells gave rise to viable high-degree chimeras with contribution to the germline. These data show that transcription factor-induced reprogramming leads to the global reversion of the somatic epigenome into an ES-like state. Our results provide a paradigm for studying the epigenetic modifications that accompany nuclear reprogramming and suggest that abnormal epigenetic reprogramming does not pose a problem for the potential therapeutic applications of iPS cells.
                Bookmark

                Author and article information

                Journal
                BMC Biol
                BMC Biology
                BioMed Central
                1741-7007
                2009
                13 January 2009
                : 7
                : 1
                Affiliations
                [1 ]Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
                [2 ]Department of Biology, Mount Union College, Alliance, OH 44601, USA
                [3 ]Department of Biology, Minot State University, Minot, SD, USA
                [4 ]The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
                [5 ]Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
                [6 ]The Developmental Biology Center, University of California Irvine, Irvine, CA 92697, USA
                [7 ]Roche Applied Science, Indianapolis, IN 46250, USA
                Article
                1741-7007-7-1
                10.1186/1741-7007-7-1
                2630914
                19144100
                eca8e30c-995d-46e5-8e75-b9726b729448
                Copyright © 2009 Monaghan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 December 2008
                : 13 January 2009
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article