Blog
About

38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Geometric cues for directing the differentiation of mesenchymal stem cells.

          Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature-and with each occupying the same area-display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patched1 regulates hedgehog signaling at the primary cilium.

            Primary cilia are essential for transduction of the Hedgehog (Hh) signal in mammals. We investigated the role of primary cilia in regulation of Patched1 (Ptc1), the receptor for Sonic Hedgehog (Shh). Ptc1 localized to cilia and inhibited Smoothened (Smo) by preventing its accumulation within cilia. When Shh bound to Ptc1, Ptc1 left the cilia, leading to accumulation of Smo and activation of signaling. Thus, primary cilia sense Shh and transduce signals that play critical roles in development, carcinogenesis, and stem cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency.

              There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive. Adult stem cells spontaneously differentiate in culture, resulting in a rapid diminution of the multipotent cell population and their regenerative capacity. Here we identify a nanostructured surface that retains stem-cell phenotype and maintains stem-cell growth over eight weeks. Furthermore, the study implicates a role for small RNAs in repressing key cell signalling and metabolomic pathways, demonstrating the potential of surfaces as non-invasive tools with which to address the stem cell niche.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 December 2013
                2013
                : 3
                Affiliations
                [1 ]Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London , Bancroft Road, Mile End, London E1 4NS, UK
                [2 ]Institute of Bioengineering and Institute of Cellular and Molecular Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London , 4 Newark Street London, E1 2AT, UK
                Author notes
                Article
                srep03545
                10.1038/srep03545
                3866595
                24346024
                Copyright © 2013, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article